Monotoniekriterium

Teilaufgabe 1a

Gegeben ist die Funktion \(f \colon x \mapsto 1 + 7e^{-0{,}2x}\) mit Definitionsbereich \(\mathbb R_{0}^{+}\); die Abbildung 1 zeigt den Graphen \(G_{f}\).

Begründen Sie, dass die Gerade mit der Gleichung \(y = 1\) waagrechte Asymptote von \(G_{f}\) ist.
Zeigen Sie rechnerisch, dass \(f\) streng monoton abnehmend ist.

Abbildung 1 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

(3 BE)

Teilaufgabe 2d

Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von \(F\) für \(0 \leq x \leq 3\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1

(4 BE)

Teilaufgabe 2a

Nun wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x}f(t)dt\) betrachtet; ihr Graph wird mit \(G_{F}\) bezeichnet.

Begründen Sie, dass \(F\) in \(x = 0\) eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von \(\mathbf{G_{f}}\) plausibel, dass im Intervall \([1;3]\) eine weitere Nullstelle von \(F\) liegt.
Geben Sie an, welche besondere Eigenschaft \(G_{F}\) im Punkt \((-1|F(-1))\) hat, und begründen Sie Ihre Angabe.

(5 BE)

Teilaufgabe 1b

Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

(4 BE)

Teilaufgabe j

Verabreicht man das Medikament nicht in Form von Tabletten, sondern mittels einer Dauerinfusion, so wird der Wirkstoff langsam und kontinuierlich zugeführt. Die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{3 \cdot e^{2x}}{e^{2x} + 1} - 1{,}5\) beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung der Wirkstoffkonzentration während einer Dauerinfusion. Dabei ist \(x\) die seit Anlegen der Dauerinfusion vergangene Zeit in Stunden und \(k(x)\) die Wirkstoffkonzentration in \(\frac{\sf{mg}}{\sf{l}}\).

Begründen Sie, dass der Graph von \(k\) streng monoton steigend ist.

(zur Kontrolle: \(k'(x) = \dfrac{6e^{2x}}{\left( e^{2x} + 1 \right)^{2}}\))

(4 BE)

Teilaufgabe b

Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

(5 BE)

Teilaufgabe 4b

Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

(2 BE)

Teilaufgabe 3b

Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

(2 BE)

Teilaufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{e^{2x}}{x}\) mit dem Definitionsbereich \(D_{f} = \mathbb R \backslash \{0\}\).

Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.

(5 BE)

Teilaufgabe 1a

Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(f \colon x \mapsto 2 \cdot \left( \left( \ln{x} \right)^{2} - 1\right)\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\).

Abbildung Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2018 BAbb. 1

Zeigen Sie, dass \(x = e^{-1}\) und \(x = e\) die einzigen Nullstellen von \(f\) sind, und berechnen Sie die Koordinaten des Tiefpunkts \(T\) von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \frac{4}{x} \cdot \ln{x}\))

(5 BE)