Monotonieverhalten

Teilaufgabe 2e

Skizzieren Sie den Graphen der Funktion \(A\) unter Verwendung der bisherigen Ergebnisse in der Abbildung 2.

Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

(3 BE)

Teilaufgabe 1b

Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

(4 BE)

Teilaufgabe k

Bei Dauerinfusionen dieses Medikaments muss die Wirkstoffkonzentration spätestens 60 Minuten nach Beginn der Infusion dauerhaft größer als 0,75\(\frac{\sf{mg}}{\sf{l}}\) sein und stets mindestens 25 % unter der gesundheitsschädlichen Grenze von 2\(\frac{\sf{mg}}{\sf{l}}\) liegen. Ermitteln Sie \(\lim \limits_{x\,\to\,+\infty} k(x)\) und beurteilen Sie beispielsweise unter Verwendung der bisherigen Ergebnisse, ob gemäß der Modellierung diese beiden Bedingungen erfüllt sind.

(5 BE)

Teilaufgabe j

Verabreicht man das Medikament nicht in Form von Tabletten, sondern mittels einer Dauerinfusion, so wird der Wirkstoff langsam und kontinuierlich zugeführt. Die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{3 \cdot e^{2x}}{e^{2x} + 1} - 1{,}5\) beschreibt für \(x \geq 0\) modellhaft die zeitliche Entwicklung der Wirkstoffkonzentration während einer Dauerinfusion. Dabei ist \(x\) die seit Anlegen der Dauerinfusion vergangene Zeit in Stunden und \(k(x)\) die Wirkstoffkonzentration in \(\frac{\sf{mg}}{\sf{l}}\).

Begründen Sie, dass der Graph von \(k\) streng monoton steigend ist.

(zur Kontrolle: \(k'(x) = \dfrac{6e^{2x}}{\left( e^{2x} + 1 \right)^{2}}\))

(4 BE)

Teilaufgabe 1c

Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

(5 BE)

Teilaufgabe 4b

Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

(2 BE)

Teilaufgabe 3b

Die Funktion \(F\) ist eine Stammfunktion von \(f\). Geben Sie das Monotonieverhalten von \(F\) im Intervall \([1;3]\) an. Begründen Sie Ihre Angabe.

(2 BE)

Teilaufgabe 2a

Die Kosten, die einem Unternehmen bei der Herstellung einer Flüssigkeit entstehen, können durch die Funktion \(K \colon x \mapsto x^{3} - 12x^{2} + 50x + 20\) mit \(x \in [0;9]\) beschrieben werden. Dabei gibt \(K(x)\) die Kosten in 1000 Euro an, die bei der Produktion von \(x\) Kubikmetern der Flüssigkeit insgesamt entstehen. Abbildung 2 zeigt den Graphen von \(K\).

Abbildung 2 Aufgab 2 Analysis 2 Mathematik Abitur Bayern 2018 BAbb. 2

Geben Sie mithilfe von Abbildung 2

α)  die Produktionsmenge an, bei der die Kosten 125 000 Euro betragen.

β)  das Monotonieverhalten von \(K\) an und deuten Sie Ihre Angabe im Sachzusammenhang.

(3 BE)

Teilaufgabe 1a

Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(f \colon x \mapsto 2 \cdot \left( \left( \ln{x} \right)^{2} - 1\right)\). Abbildung 1 zeigt den Graphen \(G_{f}\) von \(f\).

Abbildung Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2018 BAbb. 1

Zeigen Sie, dass \(x = e^{-1}\) und \(x = e\) die einzigen Nullstellen von \(f\) sind, und berechnen Sie die Koordinaten des Tiefpunkts \(T\) von \(G_{f}\).

(zur Kontrolle: \(f'(x) = \frac{4}{x} \cdot \ln{x}\))

(5 BE)

Teilaufgabe 4a

Für jeden Wert von \(a\) mit \(a \in \mathbb R^{+}\) ist eine Funktion \(f_{a}\) durch \(f_{a}(x) = \dfrac{1}{a} \cdot x^{3} - x\) mit \(x \in \mathbb R\) gegeben.

Eine der beiden Abbildungen stellt einen Graphen von \(f_{a}\) dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

Abbildung 1 Aufgabe 5a Analysis 1 Mathematik Abitur Bayern 2018 A

Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2018 A

(2 BE)