Newton Verfahren

  • Die Graphen der Funktionen \(f \colon x \mapsto 0{,}5x^2 - 3x + 4\) und \(g \colon x \mapsto x^3 - x+1\) besitzen genau einen gemeinsamen Punkt. Berechnen Sie die \(x\)-Koordinate dieses Punktes mit dem Newton-Verfahren auf zwei Dezimalen genau. Wählen Sie als Startwert \(x_0 = 1\).

    (Zur Kontrolle: \(x\)-Koordinate des gemeinsamen Punktes: \(\approx 1{,}11617\))

  • Aufgabe 1

    Bestimmen Sie die Ableitung der Funktion \(f\)mit \(f(x) = 0{,}5x^2 + 3x\) an der Stelle \(x = -2\) mithilfe des Differentialquotienten. Tipp: Verwenden Sie die h-Methode.

     

    Aufgabe 2

    Abbildung Aufgabe 5 Klausur Q11/2-005

    Die Abbildung zeigt den Graphen einer Funktion \(p\).

    a) Bestimmen Sie mithilfe der Abbildung die mittlere Änderungsrate von \(p\) im Intervall \([-2;2]\) und veranschaulichen Sie Ihre Vorgehensweise durch geeignete Eintragungen in die Abbildung. Entscheiden Sie, ob es im dargestellten Bereich des Graphen \(G_p\) ein Intervall gibt, in dem die mittlere Änderungsrate von \(p\) kleiner als null ist. Begründen Sie Ihre Entscheidung kurz.

    b) Erklären Sie die Bedeutung des Grenzwerts \(\lim \limits_{x\,\to\,-2}\dfrac{p(x) - p(-2)}{x + 2}\). Veranschaulichen Sie diesen in der Abbildung und bestimmen Sie damit näherungsweise den Grenzwert.

     

    Aufgabe 3

    Abbildung Aufgabe 3 Klausur Q11/2-005, Graph einer Funktion k

    Die Abbildung zeigt den Graphen \(G_k\) einer Funktion \(k\).

    a) Begründen Sie, dass \(k\) an der Stelle \(x = 6\) nicht differenzierbar ist, indem Sie mithilfe der Abbildung zugehörige Grenzwerte angeben und daraus schlussfolgern.

    b) Skizzieren Sie in der Abbildung den Graphen der Ableitungsfunktion \(k'\). Achten Sie auf ausreichende Genauigkeit.

     

    Aufgabe 4

    Die Tangente an den Graphen der Funktion \(f\) mit \(f(x) = 0{,}5x^2\) im Punkt \(P(2|f(2))\) und die Normale bilden mit der \(x\)-Achse das Dreieck \(PQR\).

    a) Veranschaulichen Sie den Sachverhalt in einer Skizze.

    b) Berechnen Sie den Flächeninhalt sowie die Innenwinkel des Dreiecks.

     

    Aufgabe 5

    Abbildung Klausur Q11/2-005 Aufgabe5, modellhafter Verlauf einer Wasserrrutsche 

    Die Abbildung zeigt modellhaft den Verlauf einer Wasserrutsche, der näherungsweise durch die Funktion \(f \colon x \mapsto 0{,}01x^3 -0{,}3x^2 + 2{,}25x\) mit \(D_f = [0:14]\) beschrieben wird. Eine Längeneinheit im Koordinatensystem entspricht 0,5 m in der Realität.

    a) Bestimmen Sie die maximale Höhe der Rutsche durch Rechnung.

    b) Berechnen Sie das mittlere Gefälle der Rutsche im Intervall \([6;10]\).

    c) Beschreiben Sie die wesentlichen Schritte, um die steilste Stelle der Rutsche im Intervall \([5;14]\) rechnerisch zu ermitteln.

     

    Aufgabe 6

    Die Graphen der Funktionen \(f \colon x \mapsto 0{,}5x^2 - 3x + 4\) und \(g \colon x \mapsto x^3 - x+1\) besitzen genau einen gemeinsamen Punkt. Berechnen Sie die \(x\)-Koordinate dieses Punktes mit dem Newton-Verfahren auf zwei Dezimalen genau. Wählen Sie als Startwert \(x_0 = 1\).

    (Zur Kontrolle: \(x\)-Koordinate des gemeinsamen Punktes: \(\approx 1{,}11617\))

  • Aufgabe 1

    Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

     

    Aufgabe 2

    Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

    Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

     

    Aufgabe 3

    Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

    Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

    Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

     

    Aufgabe 4

    Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

    a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

    (mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

    b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

    c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

    d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

     

    Aufgabe 5

    Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

    Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

  • Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

    Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

    a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

    b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

    c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

    d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

    e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

    Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

  • Im Intervall \([2;3]\) besitzt \(f\) genau eine Nullstelle \(a\). Bestimmen Sie einen Näherungswert von \(a\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert 3 durchführen. Man erhält dadurch \(a\) auf zwei Dezimalen genau.

    (Ergebnis: \(a \approx 2{,}82\))

    (3 BE)

  • Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.

    Abbildung 2 zu Teilaufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 2

     

    (2 BE)

  • Aus den Ergebnissen der Aufgabe 3a ergibt sich, dass jede Funktion der Schar genau eine Nullstelle besitzt. Bestimmen Sie für diese Nullstelle in Abhängigkeit von \(a\) einen Näherungswert \(x_1\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_0 = 0\) durchführen.

    (3 BE)

  • Bestimmen Sie einen Näherungswert \(x_1\) für die \(x\)-Koordinate dieses Schnittpunkts, indem Sie für die in \(\mathbb R\) definierte Funktion \(d \colon x \mapsto g(x) - h(x)\) den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_0 = 1\) durchführen.

    (4 BE)