Normalenvektor

Teilaufgabe d

Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

(zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

(5 BE)

Teilaufgabe b

Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

(3 BE)

Teilaufgabe b

Ermitteln Sie eine Gleichung der Ebene \(T\) in Normalenform.

(zur Kontrolle: \(T \colon 5x_{1} + 4x_{2} + 5x_{3} - 30 = 0\))

(3 BE)

Teilaufgabe c

Im Modell liegt die obere Begrenzungsfläche der wasserführenden Gesteinsschicht in der Ebene \(E\) und die untere Begrenzungsfläche in einer zu \(E\) parallelen Ebene \(F\). Die Ebene \(E\) enthält den Punkt \(Q\). Die Strecke \([PQ]\) steht senkrecht auf der Ebene \(E\) (vgl. Abbildung).

Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform.

(zur Kontrolle: \(E \colon 4x_{1} + 4x_{2} - 10x_{3} - 43 = 0\))

(2 BE)

Teilaufgabe d

Bestimmen Sie die Größe des Winkels, den die Kletterwand mit dem Untergrund einschließt.

(3 BE)

Teilaufgabe b

Die Punkte \(A\), \(B\), \(E\) und \(F\) liegen in der Ebene \(L\). Ermitteln Sie eine Gleichung von \(L\) in Normalenform.

(zur Kontrolle: \(L \colon 2x_{1} + 2x_{2} + 3x_{3} - 12 = 0\))

(4 BE)

Teilaufgabe a

Auf einem Spielplatz wird ein dreieckiges Sonnensegel errichtet, um einen Sandkasten zu beschatten. Hierzu werden an drei Ecken des Sandkastens Metallstangen im Boden befestigt, an deren Enden das Sonnensegel fixiert wird.

In einem kartesischen Koordinatensystem stellt die \(x_{1}x_{2}\)-Ebene den horizontalen Boden dar. Der Sandkasten wird durch das Rechteck mit den Eckpunkten \(K_{1}(0|4|0)\), \(K_{2}(0|0|0)\), \(K_{3}(3|0|0)\) und \(K_{4}(3|4|0)\) beschrieben. Das Sonnensegel wird durch das ebene Dreieck mit den Eckpunkten \(S_{1}(0|6|2{,}5)\), \(S_{2}(0|0|3)\) und \(S_{3}(6|0|2{,}5)\) dargestellt (vgl. Abbildung 1). Eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität.

Abbildung 1 Geometrie 1 Mathematik Abitur Bayern 2018 BAbb. 1

Die Punkte \(S_{1}\), \(S_{2}\) und \(S_{3}\) legen die Ebene \(E\) fest.

Ermitteln Sie eine Gleichung der Ebene \(E\) in Normalenform.

(zur Kontrolle: \(E \colon x_{1} + x_{2} + 12x_{3} - 36 = 0\))

(4 BE)

Teilaufgabe 1a

Die Punkte \(A(1|1|1)\), \(B(0|2|2)\) und \(C(-1|2|0)\) liegen in der Ebene \(E\).

Bestimmen Sie eine Gleichung von \(E\) in Normalenform.

(4 BE)

Lösung - Aufgabe 5

Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

Lösung - Aufgabe 4

Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen.