Nullstellen einer Integralfunktion

Teilaufgabe 1f

Begründen Sie, dass \(F_{1}\) höchstens vier Nullstellen hat.

(2 BE)

Teilaufgabe 1e

Begründen Sie mithilfe von Abbildung 1, dass \(F_{1}\) mindestens eine weitere positive Nullstelle hat.

(2 BE)

Teilaufgabe 1d

Im Folgenden wird die in \(\mathbb R\) definierte Funktion \(F_{1}\) mit \(\displaystyle F_{1}(x) = \int_{1}^{x} f(t) dt\) betrachtet.

\(F_{1}\) hat für \(0 \leq x \leq 10\) zwei ganzzahlige Nullstellen. Geben Sie diese an und begründen Sie Ihre Angabe.

(3 BE)

Teilaufgabe 1d

Begründen Sie unter Zuhilfenahme von Abbildung 1, dass es zwei Werte \(c \in \; ]0;6[\) gibt, für die gilt: \(\displaystyle \int_{e^{-1}}^{c} f(x) dx = 0\).

(3 BE)

Teilaufgabe 3

Die Abbildung zeigt eine nach unten geöffnete Parabel, die zu einer Funktion \(f\) mit Definitionsbereich \(\mathbb R\) gehört. Der Scheitel der Parabel hat die \(x\)-Koordinate 3.

Betrachtet wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{3}^{x}f(t) dt\).

Wie viele Nullstellen hat \(F\)?. Machen Sie Ihre Antwort ohne Rechnung plausibel.

Abbildung Aufgabe 3 Analysis 2 Mathematik Abitur Bayern 2018 A

(4 BE)

Lösung - Aufgabe 2

Abbildung 1 Klausur Q12/1-004 Aufgabe 2 - Graph von f

Abbildung 2 Klausur Q12/1-004 Aufgabe 2 - Graph A

Abbildung 3 Klausur Q12/1-004 Aufgabe 2 - Graph B

Abbildung 4 Klausur Q12/1-004 Aufgabe 2 - Graph C

Die Abbildungen zeigen den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten und stetigen Funktion \(f\) sowie die Graphen A, B und C.

Entscheiden Sie, welcher der Graphen A, B oder C den Graphen der Integralfunktion \(\displaystyle I_{0} \colon x \mapsto \int_{0}^{x} f(t) dt\) darstellt, indem Sie begründen weshalb die beiden anderen Graphen nicht in Frage kommen. 

Teilaufgabe 4b

Geben Sie den Term einer in \(\mathbb R\) definierten Funktion \(f\) an, sodass die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{-1}^x f(t)\,dt\) genau zwei Nullstellen besitzt. Geben Sie die Nullstellen von \(F\) an.

(3 BE)