Periode der allgemeinen Sinusfunktion

Teilaufgabe 1g

Für \(0 \leq x \leq 5\) gilt, dass der Graph von \(f\) und der Graph einer trigonometrischen Funktion \(h\)

●  die gleichen Schnittpunkte mit der \(x\)-Achse besitzen,

●  beide nicht unterhalb der \(x\)-Achse verlaufen,

●  jeweils mit der \(x\)-Achse eine Fläche des Inhalts \(\frac{625}{72}\) einschließen.

Bestimmen Sie einen Term einer solchen Funktion \(h\).

(6 BE)

Teilaufgabe 3a

Die Abbildung zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto p + q \cdot \sin\left( \frac{\pi}{r}x \right)\) mit \(p,qr \in \mathbb N\).

Abbildung Teilaufgabe 3a Analysis 2 Mathematik Abitur Bayern 2017 A

Geben Sie \(p,q\) und \(r\) an.

(3 BE)

Teilaufgabe 3e

Die Testperson benötigt für einen vollständigen Atemzyklus 4 Sekunden. Die Anzahl der Atemzyklen pro Minute wird als Atemfrequenz bezeichnet.

Geben Sie zunächst die Atemfrequenz der Testperson an.

Die Atemstromstärke eines jüngeren Menschen, dessen Atemfrequenz um 20 % höher ist als die der bisher betrachteten Testperson, soll durch eine Sinusfunktion der Form \(h \colon t \mapsto a \cdot \sin(b \cdot t)\) mit \(t \geq 0\) und \(b > 0\) beschrieben werden. Ermitteln Sie den Wert von \(b\).

(4 BE)

Teilaufgabe 3a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

(3 BE)

Teilaufgabe 4a

Betrachtet wird die Aussage \(\displaystyle \int_{0}^{\pi} \sin(2x)\,dx = 0\).

Machen Sie ohne Rechnung anhand einer sorgfältigen Skizze plausibel, dass die Aussage wahr ist.

(3 BE)