Prüfungsteil B

Teilaufgabe f

Durch die Rotation des Vierecks \(MTSF\) um die Gerade \(MS\) entsteht ein Körper. Beschreiben Sie diesen Körper.

In einer Formelsammlung ist zur Berechnung des Volumens eines solchen Körpers die Formel \(V = \frac{1}{3} \cdot \left( \frac{a}{2} \right)^{2} \cdot \pi \cdot b\) zu finden. Geben Sie für den beschriebenen Körper die Strecken an, deren Längen für \(a\) bzw. \(b\) einzusetzen sind.

(4 BE)

Teilaufgabe e

Die Punkte \(M\), \(T\), \(S\) und \(F\) (vgl. die Aufgaben b, c und d) liegen in einer Ebene \(Z\). Die nicht maßstabsgetreue Abbildung zeigt die Gerade \(g\), den Schnitt der Ebene \(E\) mit der Ebene \(Z\) sowie den Schnitt der Kugel \(K\) mit der Ebene \(Z\).

Begründen Sie, dass das Viereck \(MTSF\) einen Umkreis besitzt. Berechnen Sie den Flächeninhalt dieses Vierecks.

Abbildung Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2020

(4 BE)

Teilaufgabe d

Weisen Sie nach, dass die Gerade \(g\) die Kugel \(K\) im Punkt \(T(3|12|-2)\) berührt.

(5 BE)

Teilaufgabe c

Die Kugel \(K\) mit dem Mittelpunkt \(M(-13|20|0)\) berührt die Ebene \(E\). Bestimmen Sie die Koordinaten des zugehörigen Berührpunkts \(F\) sowie den Kugelradius \(r\).

(zur Kontrolle: \(F(-5|4|2)\), \(r = 18\))

(6 BE)

Teilaufgabe b

Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

(5 BE)

Teilaufgabe a

Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

\[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

(1 BE)

Teilaufgabe f

Die Abbildung 2 zeigt den Grundriss des Hallenmodells in der \(x_{1}x_{2}\)-Ebene. Stellen Sie unter Verwendung der bisherigen Ergebnisse den Schattenbereich der Flutlichtanlage in der Abbildung exakt dar.

Abbildung 2 Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2020

(4 BE)

Teilaufgabe e

Die Ebene \(F\) schneidet die \(x_{1}x_{2}\)-Ebene in der Geraden \(g\). Bestimmen Sie eine Gleichung von \(g\).

(zur Kontrolle: \(g \colon \overrightarrow{X} = \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\))

(3 BE)