Quadratische Funktion

  • Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

     

    a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

    b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

  • An den Graphen der in \(\mathbb R\) definierten Funktion \(s\,\colon x \mapsto x^2\) gibt es genau eine Tangente, deren Neigungswinkel gegen die \(x\)-Achse eine Größe von 135° hat. Geben Sie die Steigung dieser Tangente an und bestimmen Sie anschließend die Gleichung der Tangente.

    (5 BE)

  • Gegeben ist die Funktion \(h\,\colon x \mapsto -\frac{1}{2}x^2 + 2\) mit Definitionsbereich \(\mathbb R\). Der Graph von \(h\) wird mit \(G_h\) bezeichnet.

    Geben Sie die Nullstellen von \(h\) an und zeichnen Sie \(G_h\) in ein Koordinatensystem ein.

    (3 BE)

  • Dem Flächenstück, das \(G_h\) mit der \(x\)-Achse vollständig einschließt, werden Rechtecke so einbeschrieben, dass jeweils eine Seite des Rechtecks auf der \(x\)-Achse liegt. Berechnen Sie den größtmöglichen Flächeninhalt \(A\) eines solchen Rechtecks.

    (Ergebnis: \(A = \frac{16}{9}\sqrt{3}\))

    (6 BE)

  • Berechnen Sie den Anteil (in Prozent), den das Rechteck mit dem Flächeninhalt \(A\) am Inhalt des Flächenstücks einnimmt, das \(G_h\) mit der \(x\)-Achse vollständig einschließt.

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte  Funktion \(f\)  mit \(f(x) = e^x \cdot \left( 2x + x^2 \right)\).

    Bestimmen Sie die Nullstellen der Funktion \(f\).

    (2 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Abbildung 1 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(p \colon x \mapsto 0{,}5 \cdot (x + 2)^2 - 0{,}5\), die die Nullstellen \(x = -3\) und \(x = -1\) hat.

    Für \(x \in D_{f}\) gilt \(\displaystyle f(x) = \frac{1}{p(x)}\).

    Abbildung 1 zu Teilaufgabe 1c Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Gemäß der Quotientenregel gilt für die Ableitung \(f'\) und \(p'\) die Beziehung \(\displaystyle f'(x) = -\frac{p'(x)}{\big( p(x) \big)^2}\) für \(x \in D_{f}\).

    Zeigen Sie unter Verwendung dieser Beziehung und ohne Berechnung von \(f'(x)\) und \(p'(x)\), dass \(x = -2\) einzige Nullstelle von \(f'\) ist und dass \(G_{f}\) in \(]-3;-2[\) streng monoton steigend sowie in \(]-2;1[\) streng monoton fallend ist. Geben Sie Lage und Art des Extrempunkts von \(G_{f}\) an.

    (5 BE)

  • Begründen Sie, dass \(2{,}5\) die \(x\)-Koordinate des Wendepunkts von \(G_{f}\) ist.

    (2 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte ganzrationale Funktion \(f\) dritten Grades, deren Graph \(G_{f}\) an der Stelle \(x = 1\) einen Hochpunkt und an der Stelle \(x = 4\) einen Tiefpunkt besitzt.

    Begründen Sie, dass der Graph der Ableitungsfunktion \(f'\) von \(f\) eine Parabel ist, welche die \(x\)-Achse in den Punkten \((1|0)\) und \((4|0)\) schneidet und nach oben geöffnet ist.

    (3 BE)

  • Der Graph von \(f\) soll durch eine Parabel näherungsweise dargestellt werden. Dazu wird die in \(\mathbb R\) definierte quadratische Funktion \(q\) betrachtet, deren Graph den Scheitelpunkt \((0|2)\) hat und durch den Punkt \((4|f(4))\) verläuft.

    Ermitteln Sie den Term \(q(x)\) der Funktion \(q\), ohne dabei zu Runden.

    (4 BE)

  • Im Rahmen eines W-Seminars modellieren Schülerinnen und Schüler einen Tunnelquerschnitt, der senkrecht zum Tunnelverlauf liegt. Dazu beschreiben sie den Querschnitt der Tunnelwand durch den Graphen einer Funktion in einem Koordinatensystem. Der Querschnitt des Tunnelbodens liegt dabei auf der \(x\)-Achse, sein Mittelpunkt \(M\) im Ursprung des Koordinatensystems; eine Längeneinheit im Koordinatensystem entspricht einem Meter in der Realität. Für den Tunnelquerschnitt sollen folgende Bedingungen gelten:

    I   Breite des Tunnelbodens: b = 10 m

    II  Höhe des Tunnels an der höchsten Stelle: h = 5 m

    III Der Tunnel ist auf einer Breite von mindestens 6 m mindestens 4 m hoch.

    Abbildung zu Teilaufgabe 1 - Analysis 2 - Prüfungsteil B - Mathematik Abitur Bayern 2016

     

    Eine erste Modellierung des Querschnitts der Tunnelwand verwendet die Funktion \(p \colon x \mapsto -0{,}2x^{2} + 5\) mit dem Definitionsbereich \(D_{p} = [-5;5]\).

    Zeigen Sie, dass die Bedingungen I und II in diesem Modell erfüllt sind. Berechnen Sie die Größe des spitzen Winkels, unter dem bei dieser Modellierung die linke Tunnelwand auf den Tunnelboden trifft.

    (6 BE)

  • Zeigen Sie, dass Bedingung III weder bei der Modellierung mit \(p\) aus Aufgabe 1 noch bei einer Modellierung mit \(k\) erfüllt ist.

    (2 BE)

  • An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt \(t\) (in Stunden nach Beginn der Messung) durch die Gleichung \(n(t) = 3t^{2} - 60t + 500\) beschrieben werden.

    Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung.

    (3 BE)

  • Ermitteln Sie den Zeitpunkt nach Beginn der Messung, zu dem die momentane Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft \(-30\frac{\textsf{1}}{\textsf{h}}\) beträgt.

    (2 BE)

  • An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt \(t\) (in Stunden nach Beginn der Messung) durch die Gleichung \(n(t) = 3t^{2} - 60t + 500\) beschrieben werden.

    Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung.

    (3 BE)

Seite 1 von 2