Richtungsvektor

  • Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} -5 \\ -2 \\ 5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) und \(h \colon \overrightarrow{X} = \begin{pmatrix} -6 \\ -8 \\ 3 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}; \; \mu \in \mathbb R\).

    a) Weisen Sie nach, dass sich die Geraden \(g\) und \(h\) im Punkt \(S(-3|-1|4)\) schneiden.

    b) Geben Sie eine Gleichung der von den Geraden \(g\) und \(h\) aufgespannten Ebene \(E\) in Parameterform an und bestimmen Sie ein Gleichung der Ebene \(E\) in Normalenform.

  • Gegeben sind die Punkte \(A(-3|-1|4)\), \(B(0|6|5)\) und \(C(3|2|1)\).

    a) Prüfen Sie, ob die drei Punkte \(A\), \(B\) und \(C\) auf einer Gerade liegen.

    b) Eine Gleichung der Gerade \(AB\) in Parameterform ist gegeben mit \(AB \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{AB}; \; \lambda \in \mathbb R\). Beschreiben Sie ausgehend von dieser Geradengleichung die Strecke [AB].

  • Aufgabe 1

    Bestimmen Sie die folgenden unbestimmten Integrale:

    a) \(\displaystyle \int 5x^{2} \cdot e^{x^{3}} dx\)

    b) \(\displaystyle \int \frac{2}{3}x \cdot \frac{2}{x^{2} + 2} dx\)

     

    Aufgabe 2

    Gegeben ist die Funktion \(f \colon x \mapsto \frac{1}{2}x \cdot e^{1 - x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie die Funktion \(f\) auf Nullstellen und bestimmen Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs.

    b) Berechnen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \frac{1}{2}e^{1 - x}(1 - x)\))

    c) Untersuchen Sie das Krümmungsverhalten von \(G_{f}\) und geben Sie die Koordinaten des Wendepunkts an. Bestimmen Sie die Gleichung der Wendetangente \(w\).

    (zur Kontrolle: \(f''(x) = \frac{1}{2}e^{1 - x}(x - 2)\))

    d) Skizzieren Sie \(G_{f}\) sowie die Wendetangente \(w\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

    e) Weisen Sie nach, dass die Funktion \(F\colon x \mapsto -\frac{1}{2}e^{1 - x}(x + 1)\) eine Stammfunktion der Funktion \(f\) ist.

    f) Der Graph \(G_{f}\) und die Wendetangente \(w\) schließen im ersten Quadranten ein Flächenstück mit dem Flächeninhalt \(A\) ein. Schraffieren Sie dieses Flächenstück in der Skizze aus Teilaufgabe d und berechnen Sie den Flächeninhalt \(A\).

    g) Berechnen Sie das Integral \(\displaystyle \int_{0}^{+\infty} f(x) dx\) und geben Sie die geometrische Bedeutung des Ergebnisses an.

     

    Aufgabe 3

    Gegeben ist die Funktion \(f \colon x \mapsto 1 - (\ln{x})^{2}\). Die Funktion \(F \colon x \mapsto x(\ln{x} - 1)^{2}\) ist eine Stammfunktion der Funktion \(f\) (Nachweis nicht erforderlich!).

    Bestimmen Sie die untere Grenze \(a \in \mathbb R^{+}\) der in \(\mathbb R^{+}\) definierten Integralfunktion \(\displaystyle I \colon x \mapsto \int_{a}^{x} f(t) dt\) so, dass diese mit \(F(x)\) übereinstimmt.

     

    Aufgabe 4

    Gegeben sind die Punkte \(A(-3|-1|4)\), \(B(0|6|5)\) und \(C(3|2|1)\).

    a) Prüfen Sie, ob die drei Punkte \(A\), \(B\) und \(C\) auf einer Gerade liegen.

    b) Eine Gleichung der Gerade \(AB\) in Parameterform ist gegeben mit \(AB \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{AB}; \; \lambda \in \mathbb R\). Beschreiben Sie ausgehend von dieser Geradengleichung die Strecke [AB].

     

    Aufgabe 5

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} -5 \\ -2 \\ 5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) und \(h \colon \overrightarrow{X} = \begin{pmatrix} -6 \\ -8 \\ 3 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 7 \\ 1 \end{pmatrix}; \; \mu \in \mathbb R\).

    a) Weisen Sie nach, dass sich die Geraden \(g\) und \(h\) im Punkt \(S(-3|-1|4)\) schneiden.

    b) Geben Sie eine Gleichung der von den Geraden \(g\) und \(h\) aufgespannten Ebene \(E\) in Parameterform an und bestimmen Sie ein Gleichung der Ebene \(E\) in Normalenform.

  • Aufgabe 1

    Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{8 - 2x}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Geben Sie die maximale Definitionsbemenge \(D_{f}\) sowie die Wertemenge \(W_{f}\) der Funktion \(f\) an.

    b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist. Bestimmen Sie den Funktionsterm \(f^{-1}(x)\). Geben Sie die Definitions- und die Wertemenge der Umkehrfunktion \(f^{-1}\) an.

    c) Der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{f^{-1}}\) der Umkehrfunktion \(f^{-1}\) schließen im ersten Quadranten mit den Koordinatenachsen ein herzförmiges Flächenstück mit dem Flächeninhalt \(A\) ein.

    Zeichnen Sie \(G_{f}\) sowie \(G_{f^{-1}}\) mithilfe der Funktionswerte \(f(0)\), \(f(2)\), \(f(3{,}5)\) und \(f(4)\) im ersten Quadranten eines gemeinsamen Koordinatensystems. Achten Sie dabei insbesondere auf den Verlauf von \(G_{f}\) an der Stelle \(x = 4\). Schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Berechnen Sie den Flächeninhalt \(A\).

     

    Aufgabe 2

    Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

    a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

    b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

    c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

    d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

     

    Aufgabe 3

    Gegeben sind die Geraden \(g \colon \overrightarrow{X} = \overrightarrow{A} + \lambda \cdot \overrightarrow{u}\) und \(h \colon \overrightarrow{X} = \overrightarrow{B} + \mu \cdot \overrightarrow{v}\) mit \(\lambda, \mu \in \mathbb R\). Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind. Begründen Sie Ihre Entscheidung kurz.

    a) Gilt \(\overrightarrow{u} = k \cdot \overrightarrow{v}; \; k \in \mathbb R\), so verlaufen die Geraden \(g\) und \(h\) parallel zueinander.

    b) Gilt \(\overrightarrow{u} \circ \overrightarrow{v} = 0\), so schneiden sich die Geraden \(g\) und \(h\) rechtwinklig.

     

    Aufgabe 4

    Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

     

    Aufgabe 5

    Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Geben Sie jeweils eine Gleichung der Gerade \(g\) an, für die gilt:

    a) Die Gerade \(g\) ist eine Ursprungsgerade und der Punkt \(P(1|3|4)\) liegt auf \(g\).

    b) Die Gerade \(g\) verläuft parallel zur \(x_{2}\)-Achse durch den Punkt \(Q(-2|2|0)\).

    c) Die Gerade \(g\) verläuft parallel zur \(x_{1}x_{3}\)-Ebene durch den Punkt \(R(-2{,}5|1|1)\).

    d) Die Gerade \(g\) verläuft durch die Punkte \(S(3|2|-1)\) und \(T(6|4|0)\).

  • Untersuchen Sie, ob die Punkte \(A(3|1|0)\), \(B(2|-1|-2)\), \(C(-2|1|-2)\) und \(D(4|3|-4)\) in einer Ebene liegen. 

  • Beschreiben Sie unter Verwendung einer geeigneten Skizze, wie sich nachweisen lässt, dass eine Gerade orthogonal zu einer Ebene ist.

  • Eine flache Landschaft, in der sich ein Flughafen befindet, lässt sich modellhaft durch die \(x_1x_2\)-Ebene eines kartesischen Koordinatensystems beschreiben. Die \(x_1\)-Achse zeigt in Richtung Osten, die \(x_2\)-Achse in Richtung Norden; eine Längeneinheit im Modell entspricht 1 km in der Landschaft.

    Ein Flugzeug \(F_1\) steigt unmittelbar nach dem Abheben von der Startbahn geradlinig auf - im Modell vom Punkt \(P\,(-10|0|0)\) aus entlang der Geraden

    \(\displaystyle g_1\,\colon\, \overrightarrow{X} = \overrightarrow{P} + \lambda \cdot \begin{pmatrix} 5 \\ 5 \\ 1 \end{pmatrix}, \enspace \lambda \in \mathbb R\,\).

    Die Flugbahn eines Flugzeugs \(F_2\) verläuft im Modell entlang der Geraden

    \(g_2\,\colon\, \overrightarrow{X} = \begin{pmatrix} 40 \\ 50 \\ 10 \end{pmatrix} + \mu \cdot \begin{pmatrix} 10 \\ -10 \\ 0 \end{pmatrix}, \enspace \mu \in \mathbb R\,\).

    Geben Sie die Himmelsrichtung an, in der \(F_1\) fliegt, und begründen Sie, dass \(F_2\) eine konstante Flughöhe hält.

    (3 BE)

  • Berechnen Sie die Größe des Steigungswinkels der Flugbahn von \(F_1\) gegen die Horizontale.

    (4 BE)

  • Bestätigen Sie rechnerisch, dass sich die Flugbahnen der beiden Flugzeuge senkrecht schneiden. Begründen Sie, dass die Flugzeuge dennoch - auch bei unveränderten Flugbahnen - nicht zwingend kollidieren.

    (5 BE)

Seite 1 von 3