Satz des Pythagoras

  • Eine Radarstation, deren Position im Modell durch den Punkt \(R\,(20|30|0)\) veranschaulicht wird, erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) in dem vom Radar erfassten Bereich.

    (6 BE)

  • Die Schülerinnen und Schüler untersuchen nun den Abstand \(d(x)\) der Graphenpunkte \(P_{x}(x|p(x))\) vom Ursprung des Koordinatensystems.

    Zeigen Sie, dass \(d(x) = \sqrt{0{,}04x^{4} - x^{2} + 25}\) gilt.

    (3 BE)

  • Eine dritte Modellierung des Querschnitts der Tunnelwand, bei der ebenfalls die Bedingungen I und II erfüllt sind, verwendet die Funktion \(f \colon x \mapsto \sqrt{25 - x^{2}}\) mit dem Definitionsbereich \(D_{f} = [-5;5]\).

    Begründen Sie, dass in diesem Modell jeder Punkt des Querschnitts der Tunnelwand von der Bodenmitte \(M\) den Abstand 5 m hat. Zeichnen Sie den Graphen von \(f\) in ein Koordinatensystem ein (Platzbedarf im Hinblick auf spätere Aufgaben: \(-5 \leq x \leq 9\), \(-1 \leq y \leq 13\)) und begründen Sie, dass bei dieser Modellierung auch Bedingung III erfüllt ist.

    (5 BE)

  • Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

    Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

    (3 BE)

  • Bei starkem Regen verformt sich das Sonnensegel und hängt durch. Es bildet sich eine sogenannte Wassertasche aus Regenwasser, das nicht abfließen kann. Die Oberseite der Wassertasche verläuft horizontal und ist näherungsweise kreisförmig mit einem Durchmesser von 50 cm. An ihrer tiefsten Stelle ist die Wassertasche 5 cm tief. Vereinfachend wird die Wassertasche als Kugelsegment betrachtet (vgl. Abbildung 2).

    Abbildung 2 Geometrie 1 Mathematik Abitur Bayern 2018 BAbb. 2

    Das Volumen \(V\) eines Kugelsegments kann mit der Formel \(V = \frac{1}{3} \pi h^{2} \cdot (3r - h)\) berechnet werden, wobei \(r\) den Radius der Kugel und \(h\) die Höhe des Kugelsegments bezeichnen. Ermitteln Sie, wie viele Liter Wasser sich in der Wassertasche befinden.

    (zur Kontrolle: \(r = 65\;\sf{cm}\))

    (5 BE)

  • Die Schnittfigur von \(k_{1}\) und \(k_{2}\) ist ein Kreis. Bestimmen Sie die Koordinaten des Mittelpunkts und den Radius dieses Kreises.

    (3 BE)

  • Von den Eckpunkten des Rechtecks \(ABCD\) liegen der Punkt \(A(s|0)\) mit \(s \in \;]0;5[\) sowie der Punkt \(B\) auf der \(x\)-Achse, die Punkte \(C\) und \(D\) liegen auf \(G_f\). Das Rechteck besitzt somit die Gerade mit der Gleichung \(x = 5\) als Symmetrieachse. Zeigen Sie, dass die Diagonalen dieses Rechtecks jeweils die Länge 10 besitzen.

    (5 BE)

  • Drei kleine farbenfrohe Seesterne befinden sich am Meeresboden und werden im Modell durch die Punkte \(P\), \(Q\) und \(R\) dargestellt. Der Fotograf bewegt sich für seine Aufnahmen von der Stelle aus, die im Modell durch den Punkt \(K\) beschrieben wird, parallel zum Meeresboden und hat ein kegelförmiges Sichtfeld mit einem Öffnungswinkel von 90° (vgl. Abbildung).

    Beurteilen Sie, ob der Fotograf auf diese Weise eine Stelle erreichen kann, an der er alle drei Seesterne gleichzeitig im Sichtfeld der Kamera sehen kann.

    (3 BE)

  • Der Innenausbau des Pavillons erfordert eine möglichst kurze, dünne Strebe zwischen dem Mittelpunkt der Grundfläche und der südlichen Außenwand. Ermitteln Sie, in welcher Höhe über der Grundfläche die Strebe an der Außenwand befestigt ist.

    (5 BE)

  • An einem Teil der südlichen Außenwand sind Solarmodule flächenbündig montiert. Die Solarmodule bedecken im Modell eine dreieckige Fläche, deren Eckpunkte die Spitze \(S\) sowie die Mittelpunkte der Kanten \([SB]\) und \([SC]\) sind.

    Ermitteln Sie den Inhalt der von den Solarmodulen bedeckten Fläche.

    (4 BE)