Schnittpunkt zweier Geraden

Teilaufgabe f

Die untere Netzkante berührt die Plattform 2 an der Seite, die durch die Strecke \([RT]\) dargestellt wird. Betrachtet wird der untere Eckpunkt des Netzes, der oberhalb der Plattform 2 befestigt ist. Im Modell hat dieser Eckpunkt die Koordinaten \((5|10|h)\) mit einer reellen Zahl \(h > 3\). Die untere Netzkante liegt auf der Geraden \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 10 \\ h - 2 \end{pmatrix}, \; \lambda \in \mathbb R\,\).

Berechnen Sie den Abstand des betrachteten Eckpunkts von der Plattform 2.

(5 BE)

Teilaufgabe 3e

Der Punkt \(R\) aus Aufgabe 3d entspricht demjenigen Punkt der Tunnelwand, der im betrachteten Querschnitt vom Hangprofil den kleinsten Abstand \(e\) in Metern hat. Beschreiben Sie die wesentlichen Schritte eines Verfahrens zur rechnerischen Ermittlung von \(e\).

(3 BE)

Teilaufgabe c

Bestätigen Sie rechnerisch, dass sich die Flugbahnen der beiden Flugzeuge senkrecht schneiden. Begründen Sie, dass die Flugzeuge dennoch - auch bei unveränderten Flugbahnen - nicht zwingend kollidieren.

(5 BE) 

Teilaufgabe 2a

In einem kartesischen Koordinatensystem sind die Geraden \(\displaystyle g\;\colon\, \vec{X} = \begin{pmatrix} 8 \\ 1 \\ 7 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}\), \(\lambda \in \mathbb R\,\), und \(\displaystyle h\;\colon\, \vec{X} = \begin{pmatrix} -1 \\ 5 \\ -9 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}\), \(\mu \in \mathbb R\,\), gegeben. Die Geraden \(g\) und \(h\) schneiden sich im Punkt \(T\).

Bestimmen Sie die Koordinaten von \(T\).

(Ergebnis: \(T\,(2|-1|3)\)) 

(4 BE)

Teilaufgabe 1d

Bestätigen Sie durch Rechnung, dass sich die Flugbahnen der beiden Flugzeuge senkrecht schneiden.

Legen Sie dar, dass daraus auch bei unveränderten Flugbahnen nicht zwingend eine Kollision der beiden Flugzeuge folgt.

(5 BE)