Sekante

Teilaufgabe 2c

Der in Aufgabe 2b rechnerisch ermittelte Wert \(x_{m}\) könnte alternativ auch ohne Rechnung näherungsweise mithilfe von Abbildung 2 bestimmt werden. Erläutern Sie, wie Sie dabei vorgehen würden.

(3 BE)

Lösung - Aufgabe 4

Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

 

a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

Teilaufgabe 4a

An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt \(t\) (in Stunden nach Beginn der Messung) durch die Gleichung \(n(t) = 3t^{2} - 60t + 500\) beschrieben werden.

Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung.

(3 BE)

Teilaufgabe 4a

An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt \(t\) (in Stunden nach Beginn der Messung) durch die Gleichung \(n(t) = 3t^{2} - 60t + 500\) beschrieben werden.

Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung.

(3 BE)

Teilaufgabe 1c

Berechnen Sie die mittlere Änderungsrate \(m_S\) von \(f\) im Intervall \([-0{,}5; 0{,}5]\) sowie die lokale Änderungsrate \(m_T\) an der Stelle \(x = 0\). Berechnen Sie, um wie viel Prozent \(m_S\) von \(m_T\) abweicht.

(4 BE)