Anzeige nach Tag: Sinusfunktion

Lösung - Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

Aufgaben

Aufgabe 1

Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

 

a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

 

Aufgabe 3

Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

 

a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

 

Aufgabe 4

Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

 

a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

 

Aufgabe 5

Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

\(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

\(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

 

a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

α) genau einen der beiden Fehler aufweist.

β) höchstens einen der beiden Fehler aufweist.

c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

Teilaufgabe 3b

Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

(2 BE)

Teilaufgabe 2a

Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

(2 BE)

Teilaufgabe 3e

Die Testperson benötigt für einen vollständigen Atemzyklus 4 Sekunden. Die Anzahl der Atemzyklen pro Minute wird als Atemfrequenz bezeichnet.

Geben Sie zunächst die Atemfrequenz der Testperson an.

Die Atemstromstärke eines jüngeren Menschen, dessen Atemfrequenz um 20 % höher ist als die der bisher betrachteten Testperson, soll durch eine Sinusfunktion der Form \(h \colon t \mapsto a \cdot \sin(b \cdot t)\) mit \(t \geq 0\) und \(b > 0\) beschrieben werden. Ermitteln Sie den Wert von \(b\).

(4 BE)

Teilaufgabe 3d

Zu Beginn eines Ausatemvorgangs befinden sich 3,5 Liter Luft in der Lunge der Testperson. Skizzieren Sie auf der Grundlage des Modells unter Berücksichtigung des Ergebnisses aus Aufgabe 3c in einem Koordinatensystem für \(0 \leq t \leq 8\) den Graphen einer Funktion, die den zeitlichen Verlauf des Luftvolumens in der Lunge der Testperson beschreibt.

(3 BE)

Teilaufgabe 3a

In der Lungenfunktionsdiagnostig spielt der Begriff der Atemstromstärke eine wichtige Rolle.

Im Folgenden wird die Atemstromstärke als die momentane Änderungsrate des Luftvolumens in der Lunge betrachtet, d.h. insbesondere, dass der Wert der Atemstromstärke beim Einatmen positiv ist. Für eine ruhende Testperson mit normalem Atemrhythmus wird die Atemstromstärke in Abhängigkeit von der Zeit modellhaft durch die Funktion \(\displaystyle g \colon x \mapsto -\frac{\pi}{8} \sin \left( \frac{\pi}{2}t \right)\) mit Definitionsmenge \(\mathbb R_{0}^{+}\) beschrieben. Dabei ist \(t\) die seit Beobachtungsbeginn vergangene Zeit in Sekunden und \(g(t)\) die Atemstromstärke in Litern pro Sekunde. Abbildung 5 zeigt den durch die Funktion \(g\) beschriebenen zeitlichen Verlauf der Atemstromstärke.

Abbildung 5 zu Teilaufgabe 3a Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2015

Abb. 5

Berechnen Sie \(g(1{,}5)\) und interpretieren Sie das Vorzeichen dieses Werts im Sachzusammenhang.

(2 BE)

Teilaufgabe 3b

Beim Atmen ändert sich das Luftvolumen in der Lunge. Geben Sie auf der Grundlage des Modells einen Zeitpunkt an, zu dem das Luftvolumen in der Lunge der Testperson minimal ist, und machen Sie Ihre Antwort mithilfe von Abbildung 5 plausibel.

(2 BE)