Skalarprodukt

Teilaufgabe b

Bestimmen Sie die Gleichung der Ebene \(F\) in Koordinatenform.

(zur Kontrolle: \(F \colon x_{1} + x_{2} - 2x_{3} + 2 = 0\))

(3 BE)

Teilaufgabe a

Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

Bestimmen Sie die Koordinaten von \(B\).

(zur Kontrolle: \(B(-2|3|2)\))

(4 BE)

Teilaufgabe b

Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

(5 BE)

Teilaufgabe a

Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

\[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

(1 BE)

Teilaufgabe d

Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

(zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

(5 BE)

Teilaufgabe c

Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

(6 BE)

Teilaufgabe b

Berechnen Sie die Größe des Neigungswinkels der Dachfläche gegenüber der Horizontalen.

(3 BE)

Teilaufgabe 1b

Ermitteln Sie die Koordinaten des Eckpunkts \(S\) der Raute \(PQRS\). Zeigen Sie, dass \(PQRS\) kein Quadrat ist.

(2 BE)

Teilaufgabe e

Spiegelt man die Ebene \(T\) an \(U\), so erhält man die von \(T\) verschiedene Ebene \(T'\). Zeigen Sie, dass für einen bestimmten Wert von \(a\) die Gerade \(g_{a}\) in der Ebene \(T\) liegt, und begründen Sie, dass diese Gerade \(g_{a}\) die Schnittgerade von \(T\) und \(T'\) ist.

(4 BE)