Skalarprodukt

Teilaufgabe c

Berechnen Sie die Größe des spitzen Winkels, den die Seitenfläche \(ABF\) und die Grundfläche \(ABCD\) einschließen.

(3 BE)

Teilaufgabe b

Das Dreieck \(ABF\) liegt in der Ebene \(W\). Ermitteln Sie eine Gleichung von \(W\) in Koordinatenform und beschreiben Sie die besondere Lage von \(W\) im Koordinatensystem.

(zur Kontrolle: \(W \colon 4x_{2} + 3x_{3} - 20 = 0\))

(4 BE)

Teilaufgabe a

Abbildung 1 Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021Abb. 1

Der in Abbildung 1 dargestellte Körper wird begrenzt von der quadratischen Grundfläche \(ABCD\) mit \(A(5|5|0)\), \(B(-5|5|0)\), \(C(-5|-5|0)\) und \(D(5|-5|0)\), acht dreieckigen Seitenflächen und einem weiteren Quadrat \(EFGH\) mit \(E(2|0|4)\), \(F(0|2|4)\), \(G(-2|0|4)\) und \(H(0|-2|4)\). Der Mittelpunkt \(S\) des Quadrats \(ABCD\) ist der Ursprung des Koordinatensystems und der gesamte Körper ist symmetrisch sowohl bezüglich der \(x_{1}x_{3}\)-Ebene als auch bezüglich der \(x_{2}x_{3}\)-Ebene.

Zeigen Sie, dass das Dreieck \(ABF\) bei \(F\) rechtwinklig ist.

(2 BE)

Teilaufgabe b

Bestimmen Sie die Gleichung der Ebene \(F\) in Koordinatenform.

(zur Kontrolle: \(F \colon x_{1} + x_{2} - 2x_{3} + 2 = 0\))

(3 BE)

Teilaufgabe a

Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

Bestimmen Sie die Koordinaten von \(B\).

(zur Kontrolle: \(B(-2|3|2)\))

(4 BE)

Teilaufgabe b

Berechnen Sie die Größe des Schnittwinkels von \(g\) und \(E\) und zeigen Sie, dass \(S(0{,}5|6{,}5|0)\) der Schnittpunkt von \(g\) und \(E\) ist.

(5 BE)

Teilaufgabe a

Gegeben sind in einem kartesischen Koordinatensystem die Ebene \(E \colon 4x_{1} - 8x_{2} + x_{3} + 50 = 0\) und die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 3 \\ 12 \\ -2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix}, \; \lambda \in \mathbb R\,.\)

Erläutern Sie, warum die folgende Rechnung ein Nachweis dafür ist, dass \(g\) und \(E\) genau einen gemeinsamen Punkt haben:

\[\begin{pmatrix} 4 \\ -8 \\ 1 \end{pmatrix} \circ \begin{pmatrix} 5 \\ 11 \\ -4 \end{pmatrix} = -72 \neq 0\]

(1 BE)

Teilaufgabe d

Der Punkt \(L\), der vertikal über dem Mittelpunkt der Kante \([A_{1}A_{2}]\) liegt, veranschaulicht im Modell die Position einer Flutlichtanlage, die 12 m über der Grundfläche angebracht ist. Die als punktförmig angenommene Lichtquelle beleuchtet - mit Ausnahme des Schattenbereichs in der Nähe der Hallenwände - das gesamte Gelände um die Halle.

Die Punkte \(L\), \(B_{2}\) und \(B_{3}\) legen eine Ebene \(F\) fest. Ermitteln Sie eine Gleichung von \(F\) in Normalenform.

(zur Kontrolle: \(F \colon 3x_{1} + x_{2} + 5x_{3} - 90 = 0\))

(5 BE)

Teilaufgabe c

Der Punkt \(T(7|10|0)\) liegt auf der Kante \([A_{3}A_{4}]\). Untersuchen Sie rechnerisch, ob es Punkte auf der Kante \([B_{3}B_{4}]\) gibt, für die gilt: Die Verbindungsstrecken des Punktes zu den Punkten \(B_{1}\) und \(T\) stehen aufeinander senkrecht. Geben Sie gegebenenfalls die Koordinaten dieser Punkte an.

(6 BE)