Stammfunktion einer Potenzfunktion

  • Aufgabe 1

    Gegeben ist die gebrochenrationale Funktion \(f \colon x \mapsto \dfrac{6 - x^{2}}{x^{2} - 9}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Bestimmen Sie die maximale Definitionsmenge \(D_{f}\) der Funktion \(f\).

    b) Berechnen Sie die Schnittpunkte von \(G_{f}\) mit den Koordinatenachsen.

    c) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\).

    d) Untersuchen Sie das Verhalten von \(f\) an den Rändern von \(D_{f}\).

    e) Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

    f) Skizzieren Sie \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

     

    Aufgabe 2

    Bilden Sie die erste Ableitung folgender Funktionen und vereinfachen Sie den Funktionsterm der Ableitung soweit wie möglich:

    a) \(f(x) = \dfrac{1}{x - 3}\)

    b) \(g(x) = -(x^{2} - 6x + 3) (x - 2)\)

     

    Aufgabe 3

    Abbildung zu Aufgabe 3 Klausur Q11/1-001

    Die Abbildung zeigt den Graphen der Ableitungsfunktion \(f'\) einer auf \(\mathbb R\) differenzierbaren Funktion \(f\).

    a) Geben Sie das Monotonieverhalten und die Extremstelle(n) von \(f\) an.

    b) Ermitteln Sie den Funktionsterm der Funktion \(f\), deren Graph \(G_{f}\) durch den Punkt \(P(1|-1)\) verläuft und skizzieren Sie \(G_{f}\).

     

    Aufgabe 4

    Geben Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{2} + \dfrac{1}{x^{2}}\) an und erläutern Sie kurz, was man unter dem Begriff „Stammfunktion" versteht.

     

    Aufgabe 5

    Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{1}{32}x^{4} - \dfrac{1}{4}x^{2} + 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

    a) Untersuchen Sie das Symmetrieverhalten von \(f\).

    b) Untersuchen Sie das Verhalten von \(G_{f}\) für \(x \to -\infty\) und \(x \to +\infty\).

    c) Bestimmen Sie die Gleichung der Tangente \(T\) im Punkt \(P(1|f(1))\). 

    d) Berechnen Sie den Schnittpunkt \(S_{y}\) des Graphen der Funktion \(f\) mit der \(y\)-Achse.

    e) Bestimmen Sie rechnerisch Lage und Art aller Extrempunkte von \(G_{f}\).

    f) Zeichnen Sie \(G_{f}\) sowie die Tangente \(T\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

  • Abbildung zu Aufgabe 3 Klausur Q11/1-001

    Die Abbildung zeigt den Graphen der Ableitungsfunktion \(f'\) einer auf \(\mathbb R\) differenzierbaren Funktion \(f\).

    a) Geben Sie das Monotonieverhalten und die Extremstelle(n) von \(f\) an.

    b) Ermitteln Sie den Funktionsterm der Funktion \(f\), deren Graph \(G_{f}\) durch den Punkt \(P(1|-1)\) verläuft und skizzieren Sie \(G_{f}\).

  • Geben Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{2} + \dfrac{1}{x^{2}}\) an und erläutern Sie kurz, was man unter dem Begriff „Stammfunktion" versteht.

  • Geben Sie einen möglichen Term der Funktion \(t\) an. Zeigen Sie für dieses \(t\) die Gültigkeit der Aussage aus Aufgabe 3a durch Integration mithilfe einer Stammfunktion.

    (4 BE)

  • Gegeben ist die in \(\mathbb R^+\) definierte Funktion \(\displaystyle d\,\colon x \mapsto \frac{1}{\sqrt{x}}\). Bestimmen Sie den Term derjenigen Stammfunktion von \(d\), deren Graph durch den Punkt \((4|-1)\) verläuft.

    (3 BE)

  • Berechnen Sie den Anteil (in Prozent), den das Rechteck mit dem Flächeninhalt \(A\) am Inhalt des Flächenstücks einnimmt, das \(G_h\) mit der \(x\)-Achse vollständig einschließt.

    (4 BE)

  • Berechnen Sie durch Integration mithilfe des Näherungswerts von \(a\) einen Näherungswert für den Inhalt des Flächenstücks, das \(G_f\) im ersten Quadranten mit der \(x\)-Achse einschließt.

    (5 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Erläutern Sie die Bedeutung des Werts des Integrals \(\displaystyle \int_{a}^{b} g(t) dt\) für \(0 \leq a < b \leq 12\) im Sachzusammenhang. Berechnen Sie das Volumen des Wassers, das sich 7,5 Stunden nach Beobachtungsbeginn im Becken befindet, wenn zu Beobachtungsbeginn 150 m³ Wasser im Becken waren. Begründen Sie, dass es sich hierbei um das maximale Wasservolumen im Beobachtungszeitraum handelt.

    (6 BE)

  • Berechnen Sie mithilfe der Funktion \(q\) einen Näherungswert für den Flächeninhalt \(A\) des vom Kunstwerk eingenommenen Teils der Wand.

    (4 BE)

  • Skizzieren Sie den Graphen der in \(\mathbb R\) definierten Funktion \(f : x \mapsto 4 - x^2\). Berechnen Sie den Inhalt des Flächenstücks, das der Graph von \(f\) mit der \(x\)-Achse einschließt.

    (5 BE)

  • Berechnen Sie den Inhalt des Flächenstücks, das von \(G_f\), der \(x\)-Achse und der Strecke \([PQ_E]\) begrenzt wird.

    (6 BE)

  • Bestimmen Sie den Inhalt des Flächenstücks, das \(G_h\), die Koordinatenachsen und die Gerade mit der Gleichung \(x = 5\) einschließen. Interpretieren Sie das Ergebnis im Sachzusammenhang.

    (6 BE)

  • Geben Sie die maximale Definitionsmenge der Funktion \(f : x \mapsto 3\sqrt{x}\;\) an und bestimmen Sie den Term derjenigen Stammfunktion von \(f\), deren Graph den Punkt \((1|4)\) enthält.

    (4 BE)

  • Die Ursprungsgerade \(h\) mit der Gleichung \(y = \frac{2}{e^2} \cdot x\) schließt mit \(G_f\) für \(x \geq 0\) ein Flächenstück mit dem Inhalt \(B\) vollständig ein.

    Berechnen Sie die \(x\)-Koordinaten der drei Schnittpunkte der Geraden \(h\) mit \(G_f\) und zeichnen Sie die Gerade in Abbildung 2 ein. Berechnen Sie \(B\).

    (6 BE)