Steigung einer Geraden

Teilaufgabe 3d

Für den in Aufgabe 3c bestimmten Wert von \(k\) zeigt Abbildung 3 den zugehörigen Graphen mit seiner Wendetangente. In diesem Koordinatensystem sind die beiden Achsen unterschiedlich skaliert.

Bestimmen Sie die fehlenden Zahlenwerte an den Markierungsstrichen der \(y\)-Achse mithilfe eines geeigneten Steigungsdreiecks an der Wendetangente und tragen Sie die Zahlenwerte in Abbildung 3 ein.

Abbildung 3 Aufgabe 3d Analysis 1 Mathematik Abitur Bayern 2019 BAbb. 3

(2 BE)

Teilaufgabe 4a

An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt \(t\) (in Stunden nach Beginn der Messung) durch die Gleichung \(n(t) = 3t^{2} - 60t + 500\) beschrieben werden.

Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung.

(3 BE)

Teilaufgabe 4a

An einer Messstation wurde über einen Zeitraum von 10 Stunden die Anzahl der Pollen in einem Kubikmeter Luft ermittelt. Dabei kann die Anzahl der Pollen in einem Kubikmeter Luft zum Zeitpunkt \(t\) (in Stunden nach Beginn der Messung) durch die Gleichung \(n(t) = 3t^{2} - 60t + 500\) beschrieben werden.

Bestimmen Sie die mittlere Änderungsrate der Anzahl der Pollen in einem Kubikmeter Luft während der ersten beiden Stunden der Messung.

(3 BE)

Teilaufgabe 3d

Der Tunnel soll durch einen Berg führen. Im betrachteten Querschnitt wird das Profil des Berghangs über dem Tunnel durch eine Gerade \(g\) mit der Gleichung \(y = -\frac{4}{3}x + 12\) modelliert.

Zeigen Sie, dass die Tangente \(t\) an den Graphen von \(f\) im Punkt \(R(4|f(4))\) parallel zu \(g\) verläuft. Zeichnen Sie \(g\) und \(t\) in das Koordinatensystem aus Aufgabe 3a ein.

(4 BE)

Teilaufgabe 3e

Der Punkt \(R\) aus Aufgabe 3d entspricht demjenigen Punkt der Tunnelwand, der im betrachteten Querschnitt vom Hangprofil den kleinsten Abstand \(e\) in Metern hat. Beschreiben Sie die wesentlichen Schritte eines Verfahrens zur rechnerischen Ermittlung von \(e\).

(3 BE)