Anzeige nach Tag: Stochastische Unabhängigkeit

Teilaufgabe 1a

Auf einem Abschnitt einer wenig befahrenen Landstraße ist eine Höchstgeschwindigkeit von 80 km/h zugelassen. An einer Stelle dieses Abschnitts wird die Geschwindigkeit vorbeifahrender Pkw gemessen. Im Folgenden werden vereinfachend nur solche Fahrten betrachtet, bei denen die Fahrer die Geschwindigkeit unabhängig voneinander wählen konnten.

Für die ersten 200 erfassten Fahrten ergab sich nach Einteilung in Geschwindigkeitsklassen die folgende Verteilung:

Abbildung Stochastik 1 Mathematik Abitur Bayern 2018 B

Bei 62 % der 200 Fahrten war der Fahrer allein unterwegs, 65 dieser Alleinfahrer fuhren zu schnell. Aus den 200 Fahrten wird eine zufällig ausgewählt. Es werden folgende Ereignisse betrachtet:

\(A\):  „Der Fahrer war allein unterwegs."

\(S\):  „Der Pkw war zu schnell."

Weisen Sie nach, dass die Ereignisse \(A\) und \(S\) stochastisch abhängig sind, und geben Sie hierfür einen möglichen Grund im Sachzusammenhang an.

(5 BE)

Lösung - Aufgabe 5

Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

\(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

\(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

 

a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

α) genau einen der beiden Fehler aufweist.

β) höchstens einen der beiden Fehler aufweist.

c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

Aufgaben

Aufgabe 1

Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

 

a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

 

Aufgabe 3

Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

 

a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

 

Aufgabe 4

Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

 

a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

 

Aufgabe 5

Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

\(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

\(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

 

a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

α) genau einen der beiden Fehler aufweist.

β) höchstens einen der beiden Fehler aufweist.

c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

Teilaufgabe 1a

Nebenstehende Vierfeldertafel gehört zu einem Zufallsexperiment mit den stochastisch unabhängigen Ereignissen \(A\) und \(B\). Tragen Sie alle fehlenden Wahrscheinlichkeiten ein.

Abbildung Teilaufgabe 1a Stochastik 2 Mathematik Abitur Bayern 2017 A

(3 BE)

Teilaufgabe 1b

Im Vorfeld einer Wahl wird eine wahlberechtigte Person zufällig ausgewählt und befragt. Betrachtet werden folgende Ereignisse:

\(C\): „Die Person ist älter als 50 Jahre."

\(D\): „Die Person will die derzeitige Regierungspartei wählen."

Erläutern Sie, was in diesem Sachzusammenhang eine stochastische Unabhängigkeit der Ereignisse \(C\) und \(D\) bedeuten würde.

(2 BE)

Teilaufgabe 1c

Begründen Sie, dass die Ereignisse „Eine aus den 200 Jugendlichen zufällig ausgewählte Person besitzt ein Fernsehgerät." und „Eine aus den 200 Jugendlichen zufällig ausgewählte Person ist ein Mädchen." abhängig sind.

(2 BE)

Teilaufgabe 2b

Weisen Sie nach, dass die Ereignisse \(C\) und \(D\) abhängig sind.

(2 BE)

Teilaufgabe 2c

 Von den im Baumdiagramm angegebenen Zahlenwerten soll nur der Wert \(\frac{\sf{1}}{\sf{10}}\) so geändert werden, dass die Ereignisse \(C\) und \(D\) unabhängig sind. Bestimmen Sie den geänderten Wert.

(2 BE)

Teilaufgabe d

Von den im einleitenden Text angegebenen Zahlenwerten soll nur der Prozentsatz 40 % so geändert werden, dass die Ereignisse \(A\) und \(R\) unabhängig sind. Geben Sie den geänderten Wert an.

(2 BE) 

Seite 1 von 2