Tangentengleichung

Teilaufgabe 1b

Bestimmen Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \((8|g(8))\).

(4 BE)

Teilaufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{3x - 5}\) mit maximalem Definitionsbereich \(D\). Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(f\) im Punkt \((3|f(3))\).

(6 BE)

Teilaufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Lösung - Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

Aufgaben

Aufgabe 1

Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen:

 

a) \(f(x) = (3x + 2) \cdot \sqrt{\dfrac{1}{x} + 2}; \; x \neq 0\)

b) \(g(x) = e^{\frac{\cos{x}}{x}}; \; x \neq 0\)

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto 2x^{2} \cdot \sin{x}\).

Bestimmen Sie die Gleichung der Tangente \(T\) an den Graphen \(G_{f}\) der Funktion \(f\) an der Stelle \(x = \frac{\pi}{2}\).

 

Aufgabe 3

Gegeben ist die Funktionenschar \(f_{k} \colon x \mapsto x \cdot \sqrt{k - 2x}\) mit \(k \in \mathbb R^{+}\).

 

a) Geben Sie die maximale Definitionsmenge von \(f_{k}\) in Abhängigkeit des Parameters \(k\) an.

b) Untersuchen Sie das Symmetrieverhalten der Kurvenschar von \(f_{k}\) bezüglich des Koordinatensystems.

c) Untersuchen Sie das Verhalten von \(f_{k}\) an den Rändern des Definitionsbereichs.

d) Weisen Sie nach, dass für die Ableitung von \(f_{k}\) gilt: \(f'_{k}(x) = \dfrac{k - 3x}{\sqrt{k - 2x}}\).

Im Folgenden sei \(k = 4\). Der Graph der Funktion \(f_{4}\) wird mit \(G_{f_{4}}\) bezeichnet.

e) Mithilfe des Ansatzes \(x = f_{4}(x)\) lässt sich der Schnittpunkt des Graphen \(G_{f_{4}}\) mit dem Graphen der Umkehrfunktion von \(f_{4}\) ermitteln. Beschreiben Sie die Idee dieses Ansatzes. Eine Berechnung ist nicht erforderlich!

f) Untersuchen Sie das Monotonieverhalten von \(f_{4}\) unter Berücksichtigung des maximalen Definitionsbereichs und bestimmen Sie die Lage und Art des Extrempunkts von \(G_{f_{4}}\).

 

Aufgabe 4

Gegeben sind die Punkte \(A(4|-2|-1)\), \(B(2|4|5)\) und \(C(5|-6|3)\).

 

a) Ermitteln Sie die Größe des Innenwinkels \(\alpha\) des Dreiecks \(ABC\).

b) Geben Sie die Gleichung der Kugel \(K\) mit dem Mittelpunkt \(C\) in Koordinatendarstellung an, auf deren Oberfläche der Punkt \(A\) liegt. Untersuchen Sie mithilfe der Kugelgleichung, ob der Punkt \(B\) innerhalb der Kugel \(K\), auf der Kugeloberfläche von \(K\) oder außerhalb von \(K\) liegt.

 

Aufgabe 5

Ein Unternehmen fertigt in großer Stückzahl ein elektronisches Bauteil. Bei der Herstellung können zwei Arten von Fehlern auftreten, ein elektrischer Fehler und ein optischer Fehler. Betrachtet werden folgende Ereignisse:

\(E\): „Ein zufällig ausgewähltes Bauteil weist einen elektrischen Fehler auf."

\(O\): „Ein zufällig ausgewähltes Bauteil weist einen optischen Fehler auf."

Aus laufender Qualitätskontrolle ist bekannt, dass 5 % der gefertigten Bauteile einen elektrischen Fehler aufweisen. Zudem haben 3 % einen elektrischen, aber keinen optischen Fehler sowie 4 % einen optischen, aber keinen elektrischen Fehler.

 

a) Beschreiben Sie das Ereignis \(\overline{E \cup O}\) im Sachzusammenhang.

b) Erstellen Sie eine vollständig ausgefüllte Vierfeldertafel und geben Sie daraus an, mit welcher Wahrscheinlichkeit ein zufällig ausgewähltes Bauteil

α) genau einen der beiden Fehler aufweist.

β) höchstens einen der beiden Fehler aufweist.

c) Untersuchen Sie die Ereignisse \(E\) und \(O\) auf Unabhängigkeit.

d) Wie viele Bauteile müssen mindestens zufällig ausgewählt werden, um mit einer Wahrscheinlichkeit von mehr als 99 % mindestens ein Bauteil zu erhalten, das einen elektrischen Fehler aufweist?

Lösung - Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

(Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

Aufgaben

Aufgabe 1

Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

(Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

 

Aufgabe 3

a) Berechnen Sie die Ableitung folgender Funktionen mithilfe der Ableitungsregeln ohne anschließend zu vereinfachen.

 

α) \(f(x) = 3x^{4} - \dfrac{3}{x} + 6\)

β) \(g(x) = (2x - 3)(x^{2} - t)\)

γ) \(h(x) = \dfrac{3x - 5}{3 - x^{3}}\)

 

b) Bestimmen Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{4} + \dfrac{3}{x^{3}} - 4\).

 

Aufgabe 4

Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

 

a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

 

Aufgabe 5

Florian behauptet: „Sind die Ableitungen von zwei Funktionen gleich, so sind auch die Funktionen selbst gleich."

Nehmen Sie zu Florians Aussage begründend Stellung.

 

Aufgabe 6

Ordnen Sie die Graphen I bis VI den freien Feldern der Tabelle so zu, dass unter einem Funktionsgraphen jeweils der Graph seiner Ableitung zu sehen ist und beschriften Sie die Felder entsprechend. Begründen Sie Ihre Wahl für die erste Spalte.

Hinweis: Die Skalierung der Koordinatenachsen ist für alle abgebildeten Graphen dieselbe.

 

Funktionsgraph links oben der Tabelle zu Aufgabe 6  
 Funktionsgraph mittig der Tabelle zu Aufgabe 6  
  Funktionsgraph rechts unten der Tabelle zu Aufgabe 6 

 

Graphen I bis VI:

Graph IGraph IIGraph III
Graph IVGraph VGraph VI

Teilaufgabe 1a

Gegeben ist die in \(\mathbb R^{+}\) definierte Funktion \(h \colon x \mapsto 3x \cdot (-1 + \ln x)\).

Abbildung 1 zeigt den Graphen \(G_{h}\) von \(h\) im Bereich \(0{,}75 \leq x \leq 4\).

Abbildung 1 Aufgabe 1 Analysis 1 Mathematik Abitur Bayern 2017 B

Bestimmen Sie die Gleichung der Tangente an \(G_{h}\) im Punkt \((e|0)\) und berechnen Sie die Größe des Winkels, unter dem diese Tangente die \(x\)-Achse schneidet.

(zur Kontrolle: \(h'(x) = 3 \cdot \ln x\))

(4 BE)

Teilaufgabe 2b

Die Tangente an den Graphen von \(f\) im Punkt \(S(0|1)\) begrenzt mit den beiden Koordinatenachsen ein Dreieck. Weisen Sie nach, dass dieses Dreieck gleichschenklig ist.

(3 BE)

Teilaufgabe 2b

Die Tangente an den Graphen von \(f\) im Punkt \(S(0|1)\) begrenzt mit den beiden Koordinatenachsen ein Dreieck. Weisen Sie nach, dass dieses Dreieck gleichschenklig ist.

(3 BE)