Anzeige nach Tag: Tangentensteigung

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) im Punkt \(W(5|0)\) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(6 BE)

Teilaufgabe 2

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Teilaufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{3x - 5}\) mit maximalem Definitionsbereich \(D\). Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(f\) im Punkt \((3|f(3))\).

(6 BE)

Teilaufgabe 4

Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f\) mit dem Wendepunkt \(W(1|4)\).

Ermitteln Sie mithilfe der Abbildung näherungsweise den Wert der Ableitung von \(f\) an der Stelle \(x = 1\).

Skizzieren Sie den Graphen der Ableitungsfunktion \(f'\) von \(f\) in die Abbildung; berücksichtigen Sie dabei insbesondere die Lage der Nullstellen von \(f'\) sowie den für \(f'(1)\) ermittelten Näherungswert.

Abbildung Aufgabe 3 Analysis 1 Mathematik Abitur Bayern 2018 A

(3 BE)

Teilaufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Aufgaben

Aufgabe 1

Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

 

Aufgabe 2

Ein Test besteht aus zwölf Fragen, zu denen es jeweils gleich viele Antwortmöglichkeiten gibt. Pro Frage ist genau eine Antwort richtig.

Wie viele Antwortmöglichkeiten darf der Test höchstens nennen, damit ein ratender Teilnehmer mit einer Wahrscheinlichkeit von mindestens 99 % mindestens eine Frage richtig beantwortet.

 

Aufgabe 3

Abbildung Klausur Q12/2-002 Aufgabe 3, Wahrscheinlichkeitsverteilung einer nach B(n;p) binomialverteilten Zufallsgröße X

Die Abbildung zeigt die vollständige Wahrscheinlichkeitsverteilung einer nach \(B(n;p)\) binomialverteilten Zufallsgröße \(X\) und kennzeichnet die Lage des Erwartungswerts \(\mu = E(X)\).

Bestimmen Sie mithilfe der Abbildung und unter Verwendung des Stochastischen Tafelwerks die Werte der Parameter \(n\) und \(p\). Erläutern Sie Ihre Vorgehensweise.

 

Aufgabe 4

Die Punkte \(O(0|0|0)\), \(P(5|2|2)\) und \(Q(-2|4|-2)\) legen die Grundfläche \(OPQ\) der Pyramide \(OPQS\) mit dem Volumeninhalt 20 VE (Volumeneinheiten) fest. Die Spitze \(S\) der Pyramide \(OPQS\) liegt auf der positiven \(x_{3}\)-Achse.

a) Bestimmen Sie eine Gleichung der Ebene \(E\) in Normalenform, in der die Grundfläche \(OPQ\) liegt.

(mögliches Ergebnis: \(E \colon -2x_{1} + x_{2} + 4x_{3} = 0\))

b) Berechnen Sie den Neigungswinkel der Grudfläche \(QPS\) gegenüber der Horizontalen.

c) Berechnen Sie die Koordinaten der Pyramidenspitze \(S\).

d) Die Menge aller Pyramidenspitzen \(S^{*}\), sodass der Volumeninhalt der Pyramiden \(OPQS^{*}\) stets 20 VE beträgt, ist gegeben durch die Ebene \(F\). Ermitteln Sie eine Gleichung der Ebene \(F\) in Normalenform.

 

Aufgabe 5

Gegeben ist die Gerade \(g\) mit der Gleichung \(g \colon \overrightarrow{X} = \begin{pmatrix} 6 \\ 6 \\ -3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 2 \\ -3 \end{pmatrix}; \; \lambda \in \mathbb R\) sowie die Kugel \(K\) mit dem Mittelpunkt \(M(3|4|5)\) und dem Radius \(r = 3\).

Zeigen Sie durch Rechnung, dass die Gerade \(g\) die Kugel \(K\) tangiert.

Lösung - Aufgabe 1

Gegeben sind die Funktionen \(f\colon x \mapsto e^{x}\) und \(g\colon x \mapsto \ln{x}\) sowie die Funktion \(h\colon x \mapsto x \cdot e^{x} - 1\).

Es gibt eine Stelle \(x_{T}\), an der der Graph \(G_{f}\) der Funktion \(f\) und der Graph \(G_{g}\) der Funktion \(g\) dieselbe Steigung besitzen.

a) Skizzieren Sie \(G_{f}\) und \(G_{g}\) und Veranschaulichen Sie die Stelle \(x_{T}\) durch Eintragung geeigneter geometrischer Elemente. 

b) Begründen Sie rechnerisch, dass \(h(x) = 0\) ein geeigneter Lösungsansatz zur Berechnung von \(x_{T}\) ist. Versuchen Sie nicht, die Gleichung zu lösen!

c) Die Gleichung \(h(x) = 0\) lässt sich näherungsweise mithilfe des Newton-Verfahrens lösen. Begründen Sie, dass \(x_{0} \in [0{,}3;0{,}7]\) ein geeigneter Startwert für die Anwendung des Newton-Verfahrens ist.

d) Berechnen Sie näherungsweise die Stelle \(x_{T}\) gleicher Steigung von \(G_{f}\) und \(G_{g}\), indem Sie den ersten Schritt des Newton-Verfahrens mit dem Startwert \(x_{0} = 0{,}5\) durchführen.

e) Die Gerade \(x = x_{T}\) schneidet \(G_{f}\) im Punkt \(P\) und \(G_{g}\) im Punkt \(Q\). Die Normale \(N_{f}\) durch Punkt \(P\) sowie die Normale \(N_{g}\) durch Punkt \(Q\) schließen mit den Graphen \(G_{f}\) und \(G_{g}\) ein Flächenstück mit dem Flächeninhalt \(A\) ein. Die Gerade \(x = x_{T}\) teilt dieses Flächenstück in zwei gleich große Teilflächen.

Ergänzen Sie Ihre Skizze aus Teilaufgabe a um die Gerade \(x = x_{T}\) sowie die Normalen \(N_{f}\) und \(N_{g}\) und schraffieren Sie das Flächenstück mit dem Flächeninhalt \(A\). Beschreiben Sie sodann die wesentlichen Schritte zur Berechnung des Flächeninhalts \(A\).

Aufgaben

!!! Derzeit in Bearbeitung !!!

 

Aufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

(Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

 

Aufgabe 2

Der Graph \(G_{f}\) einer gebrochenrationalen Funktion \(f\) hat folgende Eigenschaften:

\(G_{f}\) hat genau die zwei Nullstellen \(x = 0\) und \(x = 4\).

\(G_{f}\) hat genau die zwei Polstellen mit Vorzeichenwechsel \(x = -1\) und \(x = 2\).

\(G_{f}\) hat eine waagrechte Asymptote mit der Gleichung \(y = 2\).

 

a) Geben Sie einen möglichen Funktionsterm der Funktion \(f\) an und Skizzieren Sie den Graphen der Funktion \(f\).

b) „Der Funktionsterm \(f(x)\) ist durch die genannten Eigenschaften eindeutig bestimmt." Nehmen Sie zu dieser Aussage begründend Stellung.

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

 

Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

a) zwei Extrempunkte

b) einen Terrassenpunkt

besitzt.

 

Aufgabe 4

Abbildung zu Aufgabe 4 Klausur Q11/1-004

Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

 

a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

(Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

 

Aufgabe 5

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto f(x)\) mit

 

\[f(x) = \vert 2x - 4 \vert = \begin{cases} \begin{align*} 2x - 4 \; \text{falls} \; &x \geq 0 \\[0.8em] -(2x - 4) \; \text{falls} \; &x < 0 \end{align*} \end{cases}\]

 

Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Skizzieren Sie \(G_{f}\) in ein geeignetes Koordinatensystem und begründen Sie geometrisch, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

b) Bestätigen Sie durch Rechnung, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

Lösung - Aufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

(Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

Aufgaben

Aufgabe 1

Geben Sie von folgenden Funktionen jeweils die maximale Definitionsmenge an. Bestimmen Sie jeweils die erste Ableitung der Funktion und vereinfachen Sie den Term der Ableitungsfunktion soweit wie möglich.

 

a) \(f(x) = -2\cos{(3- x)}\)

b) \(g(x) = \ln{\left( 2 - x^{2} \right)}\)

c) \(h(x) = \dfrac{-2 + e^{x}}{e^{x} - 1}\)

 

Aufgabe 2

Geben Sie zu jeder der folgenden Funktionen eine Stammfunktion an.

 

a) \(f(x) = \dfrac{2}{x^{2}}; \; D_{f} = \mathbb R \backslash \{0\}\)

b) \(g(x) = -\dfrac{1}{3}\sin(3x - 2); \; D_{g} = \mathbb R\)

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

 

a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen der Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

 

Aufgabe 4

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto x \cdot e^{4 - 0{,}25x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie die Nullstelle(n) von \(f\) sowie die Lage und Art des/der Extrempunkte(s) von \(G_{f}\).

c) Ermitteln Sie die Gleichung der Normale \(N\) im Punkt P\((0|f(0))\).

 

Aufgabe 5

Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

 

a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).