Tangentensteigung

Teilaufgabe 2b

Geben Sie \(g'(0)\) an un zeichnen Sie \(G_{g}\) im Bereich \(-4 \leq x \leq 4\) unter Berücksichtigung der bisherigen Ergebnisse und der Tatsache, dass \(G_{g}\) in \(W(0|g(0))\) seinen einzigen Wendepunkt hat, in ein Koordinatensystem ein.

(3 BE)

Teilaufgabe 1d

Die in \(\mathbb R\) definierte Funktion \(F\) ist diejenige Stammfunktion von \(f\), deren Graph durch den Punkt \(T(-1|2)\) verläuft.

Begründen Sie mithilfe der Abbildung, dass der Graph von \(F\) im Punkt \(T\) einen Tiefpunkt besitzt.

(2 BE)

Teilaufgabe 3c

Die Funktion \(p\) besitzt im Intervall \([4;12]\) eine Wendestelle. Geben Sie die Bedeutung dieser Wendestelle im Sachzusammenhang an.

(2 BE)

Teilaufgabe 1c

Die Punkte \(A(3|3{,}6)\) und \(B(8|0{,}8)\) liegen auf \(G_{f}\); zwischen diesen beiden Punkten verläuft \(G_{f}\) unterhalb der Strecke \([AB]\).

Skizzieren Sie \(G_{f}\) im Bereich \(-10 \leq x \leq 10\) unter Verwendung der bisherigen Informationen in einem Koordinatensystem.

(4 BE)

Teilaufgabe 1b

Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

(zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

(5 BE)

Teilaufgabe 3a

Betrachtet werden eine in \(\mathbb R\) definierte ganzrationale Funktion \(p\) und der Punkt \(Q(2|p(2))\).

Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von \(p\) im Punkt \(Q\) ermitteln kann.

(2 BE)

Teilaufgabe 3b

Gegeben ist eine in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto ax^{2} + c\) mit \(a, c \in \mathbb R\), deren Graph im Punkt \(N(1|0)\) die Tangente mit der Gleichung \(y = -x + 1\) besitzt. Bestimmen Sie \(a\) und \(c\).

(3 BE)

Teilaufgabe 4b

Die Tangente an den Graphen von \(f\) im Punkt \(Q_{a}\) wird mit \(t_{a}\) bezeichnet. Bestimmen Sie rechnerisch denjenigen Wert von \(a \in \mathbb R\), für den \(t_{a}\) durch \(P\) verläuft.

(3 BE)

Teilaufgabe 1c

Bestimmen Sie rechnerisch eine Gleichung der Tangente \(t\) an \(G_{f}\) im Punkt \((3|f(3))\). Berechnen Sie die Größe des Winkels, unter dem \(t\) die \(x\)-Achse schneidet, und zeichnen Sie \(t\) in die Abbildung 1 ein.

(4 BE)

Teilaufgabe 3a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

(3 BE)