Tangentensteigung

Teilaufgabe 1c

Bestimmen Sie rechnerisch eine Gleichung der Tangente \(t\) an \(G_{f}\) im Punkt \((3|f(3))\). Berechnen Sie die Größe des Winkels, unter dem \(t\) die \(x\)-Achse schneidet, und zeichnen Sie \(t\) in die Abbildung 1 ein.

(4 BE)

Teilaufgabe 3a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

(3 BE)

Teilaufgabe 2b

Es gibt Tangenten an den Graphen von \(f\), die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen \(\mathbf{G_{f'}}\) der Ableitungsfunktion \(f'\) in der Abbildung 1 Näherungswerte für die \(x\)-Koordinaten derjenigen Punkte, in denen der Graph von \(f\) jeweils eine solche Tangente hat.

(2 BE)

Teilaufgabe 4a

Die nebenstehende Abbildung 2 zeigt den Graphen einer Funktion \(f\).

Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 2

Einer der folgenden Graphen I, II und III gehört zur ersten Ableitungsfunktion von \(f\). Geben Sie diesen an. Begründen Sie, dass die beiden anderen Graphen dafür nicht infrage kommen.

Graph I Analysis 1 Mathematik Abitur Bayern 2019 A

Graph II Analysis 1 Mathematik Abitur Bayern 2019 A

Graph III Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 3

(3 BE)

Teilaufgabe 1b

Bestimmen Sie die Gleichung der Tangente an den Graphen von \(g\) im Punkt \((8|g(8))\).

(4 BE)

Teilaufgabe 3a

Die nebenstehende Abbildung 2 zeigt den Graphen einer Funktion \(f\).

Abbildung 2 Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 2

Einer der folgenden Graphen I, II und III gehört zur ersten Ableitungsfunktion von \(f\). Geben Sie diesen an. Begründen Sie, dass die beiden anderen Graphen dafür nicht infrage kommen.

Graph I Analysis 1 Mathematik Abitur Bayern 2019 A

Graph II Analysis 1 Mathematik Abitur Bayern 2019 A

Graph III Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 3

(3 BE)

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) im Punkt \(W(5|0)\) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(6 BE)

Teilaufgabe 2

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Teilaufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{3x - 5}\) mit maximalem Definitionsbereich \(D\). Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(f\) im Punkt \((3|f(3))\).

(6 BE)

Teilaufgabe 4

Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f\) mit dem Wendepunkt \(W(1|4)\).

Ermitteln Sie mithilfe der Abbildung näherungsweise den Wert der Ableitung von \(f\) an der Stelle \(x = 1\).

Skizzieren Sie den Graphen der Ableitungsfunktion \(f'\) von \(f\) in die Abbildung; berücksichtigen Sie dabei insbesondere die Lage der Nullstellen von \(f'\) sowie den für \(f'(1)\) ermittelten Näherungswert.

Abbildung Aufgabe 3 Analysis 1 Mathematik Abitur Bayern 2018 A

(3 BE)