Vektoraddition

  • Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

     

    a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

    b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

    c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

    d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

    e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

    f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

  • Die Abbildung zeigt ein gerades Prisma \(ABCDEF\) mit \(A\,(0|0|0)\), \(B\,(8|0|0)\), \(C\,(0|8|0)\) und \(D\,(0|0|4)\).

    Abbildung zu Teilaufgabe 1

    Bestimmen Sie den Abstand der Eckpunkte \(B\) und \(F\).

    (2 BE)

  • Eine Kugel besitzt den Mittelpunkt \(M\,(-3|2|7)\). Der Punkt \(P\,(3|4|4)\) liegt auf der Kugel.

    Der Punkt \(Q\) liegt ebenfalls auf der Kugel, die Strecke \([PQ]\) verläuft durch deren Mittelpunkt. Ermitteln Sie die Koordinaten von \(Q\).

    (3 BE)

  • Begründen Sie, dass der erste Summand des Terms \(t(x)\) die für die Hinfahrt, der zweite Summand die für die Rückfahrt erforderliche Zeit in Stunden angibt.

    (3 BE)

  • Begründen Sie im Sachzusammenhang, dass \(t(x)\) für \(0 < x < 5\) nicht als Gesamtfahrzeit interpretiert werden kann.

    (2 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Das Ende der Rechtskurve wird im Koordinatensystem durch den Punkt \(C\) beschrieben. Begründen Sie, dass für den Ortsvektor des Punkts \(C\) gilt: \(\overrightarrow{C} = \overrightarrow{M} + \overrightarrow{v}\).

    (2 BE)

  • Abbildung 1 zeigt eine Sonnenuhr mit einer gegenüber der Horizontalen geneigten, rechteckigen Grundplatte, auf der sich ein kreisförmiges Zifferblatt befindet. Auf der Grundplatte ist der Polstab befestigt, dessen Schatten bei Sonneneinstrahlung die Uhrzeit auf dem Zifferblatt anzeigt.

    Abbildung 1 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 1

    Eine Sonnenuhr dieser Bauart wird in einem kartesischen Koordinatensystem modellhaft dargestellt (vgl. Abbildung 2). Dabei beschreibt das Rechteck \(ABCD\) mit \(A\,(5|-4|0)\) und \(B\,(5|4|0)\) die Grundplatte der Sonnenuhr. Der Befestigungspunkt des Polstabs auf der Grundplatte wird im Modell durch den Diagonalenschnittpunkt \(M\,(2{,}5|0|2)\) des Rechtecks \(ABCD\) dargestellt. Eine Längeneinheit im Koordinatensystem entspricht 10 cm in der Realität. Die Horizontale wird im Modell durch die \(x_{1}x_{2}\)-Ebene beschrieben.

    Abbildung 2 zu Teilaufgabe a Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2015Abb. 2

    Bestimmen Sie die Koordinaten des Punkts \(C\). Ermitteln Sie eine Gleichung der Ebene \(E\), in der das Rechteck \(ABCD\) liegt, in Normalenform.

    (mögliches Teilergebnis: \(E\colon 4x_{1} + 5x_{3} - 20 = 0\))

    (5 BE)

  • Die Gerade \(g\) verläuft durch die Punkte \(A\,(0|1|2)\) und \(B\,(2|5|6)\).

    Zeigen Sie, dass die Punkte \(A\) und \(B\) den Abstand 6 haben.

    Die Punkte \(C\) und \(D\) liegen auf \(g\) und haben von \(A\) jeweils den Abstand 12. Bestimmen Sie die Koordinaten von \(C\) und \(D\).

    (3 BE)

  • Die Punkte \(A\), \(B\) und \(E\,(1|2|5)\) sollen mit einem weiteren Punkt die Eckpunkte eines Parallelogramms bilden. Für die Lage des vierten Eckpunkts gibt es mehrere Möglichkeiten.

    Geben Sie für zwei dieser Möglichkeiten die Koordinaten des vierten Eckpunkts an.

    (2 BE)

  • Gegeben sind die Punkte \(A(-2|1|4)\) und \(B(-4|0|6)\)

    Bestimmen Sie die Koordinaten des Punkts \(C\) so, dass gilt: \(\overrightarrow{CA} = 2 \cdot \overrightarrow{AB}\).

    (2 BE)

  • Gegeben sind die Punkte \(A(-2|1|4)\) und \(B(-4|0|6)\)

    Bestimmen Sie die Koordinaten des Punkts \(C\) so, dass gilt: \(\overrightarrow{CA} = 2 \cdot \overrightarrow{AB}\).

    (2 BE)

  • Begründen Sie, dass das Viereck \(ABA'B'\) ein Quadrat mit der Seitenlänge \(3\sqrt{2}\) ist.

    (4 BE)

  • Auf der Strecke \([AB]\) gibt es einen Punkt \(D\), der von \(B\) dreimal so weit entfernt ist wie von \(A\). Bestimmen Sie die Koordinaten von \(D\).

    (2 BE)

Seite 1 von 2