Anzeige nach Tag: Verhalten im Unendlichen

Teilaufgabe 1e

Die gebrochen-rationale Funktion \(h \colon x \mapsto 1{,}5x - 4{,}5 + \frac{1}{x}\) mit \(x \in \mathbb R \backslash \{0\}\) stellt in einem gewissen Bereich eine gute Näherung für \(f\) dar.

Geben Sie die Gleichungen der beiden Asymptoten des Graphen von \(h\) an.

(2 BE)

Lösung - Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \sqrt{x^{2} + 9} - 1\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet

 

a) Bestimmen Sie die Definitions- und Wertemenge der Funktion \(f\).

b) Untersuchen Sie die Umkehrbarkeit der Funktion \(f\).

c) Ermitteln sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) mit \(D_{f} = \mathbb R^{+}\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an.

d) Geben Sie an, welche Eigenschaft alle Schnittpunkte des Graphen der Funktion \(f\) und des Graphen einer Umkehrfunktion \(f^{-1}\) haben und begründen Sie Ihre Aussage.

Aufgaben

Aufgabe 1

Bestimmen Sie jeweils die erste Ableitung der folgenden Funktionen, ohne anschließend zu vereinfachen.

 

a) \(f(x) = 2\sqrt{x} \cdot \cos(0{,}5x)\)

b) \(g(x) = \dfrac{\ln\left(\dfrac{1}{x^{3}}\right)}{2x + 3}\)

 

Aufgabe 2

Abbildung zu Aufgabe 2 Klausur Q11/2-002

Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

 

a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

 

Aufgabe 3

Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

 

Aufgabe 4

Einer der folgenden Graphen gehört zu der in \(\mathbb R\) definierten Funktion \(f \colon \dfrac{x + 3}{e^{x}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

Geben Sie an, welcher der Graphen i, II oder III den Graphen \(G_{f}\) zeigt und begründen Sie jeweils, warum die beiden anderen Graphen nicht in Frage kommen. 

Abbildung zu Aufgabe 4 Klausur Q11 2 002

 

Aufgabe 5

An der Decke eines Hausflurs ist eine Deckenleuchte angebracht. Die Randlinie des Lichtkegels der Deckenleuchte kann näherungsweise durch die Funktion \(\displaystyle f \colon x \mapsto -3 \cdot \left( e^{0{,}4x} + e^{-0{,}5x} \right) + 9\) beschrieben werden mit \(x\) und \(y\) in Metern (vgl. Abbildung). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

Abbildung zu Aufgabe 5 Klausur Q11 2 002

 

a) Zeigen Sie, dass \(G_{f}\) nicht symmetrisch bezüglich des Koordinatensystems ist.

b) Ersetzen Sie einen Zahl \((\neq 0)\) des Funktionsterms \(f(x)\) so, dass \(G_{f}\) symmetrisch ist und geben Sie die Art der Symmetrie an.

Eine Feinjustierung der LEDs der Deckenleuchte verändert den Lichtkegel. Die Randlinie des Lichtkegels wird nun näherungsweise durch die Funktion \(g \colon x \mapsto -3 \cdot \left( e^{0{,}5x} + e^{-0{,}5x} \right) + 9\) beschrieben. Der Graph der Funktion \(g\) wird mit \(G_{g}\) bezeichnet.

c) Bestimmen Sie die Schnittpunkte von \(G_{g}\) mit den Koordinatenachsen. Hinweis: Verwenden Sie die Substitution \(u = e^{0{,}5x}\) zur Bestimmung der Schnittpunkte mit der \(x\)-Achse.

d) Berechnen Sie den Winkel, unter dem \(G_{g}\) die negative \(x\)-Achse schneidet.

e) Die Position der Aufhängung der Deckenleuchte entspricht der Lage des Hochpunkts von \(G_{g}\). Die Aufhängung ist 85 cm von der Decke entfernt. Berechnen Sie die Raumhöhe \(h\) des Hausflurs, an dessen Decke die Deckenleuchte angebracht ist.

 

Aufgabe 6

Der Punkt \(A(4|-1|0)\) ist Mittelpunkt der Kugel \(K\), auf deren Oberfläche der Punkt \(B(-1|1|4)\) liegt. 

Ermitteln Sie die Koordinaten eines weiteren Punktes \(C\), der ebenfalls auf der Kugeloberfläche liegt.

Lösung - Aufgabe 2

Abbildung zu Aufgabe 2 Klausur Q11/2-002

Die Abbildung zeigt den Graphen \(G_{f}\) der Funktion \(f \colon x \mapsto 4 - 2e^{x - 4}\).

 

a) Geben Sie die Definitionsmenge der Funktion \(f\) an. Bestimmen Sie das Verhalten an den Rändern des Definitionsbereichs. Geben Sie die Wertemenge der Funktion \(f\) an.

b) Begründen Sie, dass die Funktion \(f\) umkehrbar ist.

c) Berechnen Sie die Umkehrfunktion \(f^{-1}\) der Funktion \(f\) und geben Sie die Definitions- und Wertemenge der Umkehrfunktion an. Skizzieren Sie den Graphen der Umkehrfunktion \(f^{-1}\) in das obige Koordinatensystem.

Lösung - Aufgabe 3

Gegeben ist die Funktion \(f\colon x \mapsto 2(e^{x} - 1)^{2}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die Definitionsmenge der Funktion \(f\) an.

b) Ermitteln Sie das Verhalten von \(f\) für \(x \to -\infty\) und \(x \to +\infty\). Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Koordinatenursprung absoluter Tiefpunkt von \(G_{f}\) ist. Geben Sie die Wertemenge der Funktion \(f\) an.

Lösung - Aufgabe 4

Einer der folgenden Graphen gehört zu der in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto \dfrac{x + 3}{e^{x}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

Geben Sie an, welcher der Graphen I, II oder III den Graphen \(G_{f}\) zeigt und begründen Sie jeweils, warum die beiden anderen Graphen nicht in Frage kommen. 

Abbildung zu Aufgabe 4 Klausur Q11 2 002

Lösung - Aufgabe 1

Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

Aufgaben

Aufgabe 1

Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

 

Aufgabe 2

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x + 4}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Geben Sie die maximale Definitionsmenge sowie die Nullstelle(n) und die Polstelle(n) der Funktion \(f\) an. Bestimmen Sie die Gleichungen aller Asymptoten des Graphen der Funktion \(f\).

b) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

c) Leiten Sie die Funktion \(f\) sowohl mit der Produkt- als auch der Quotientenregel ab.

(Zur Kontrolle: \(f'(x) = \dfrac{-4x - 8}{x^{3}}\))

d) Bestimmen Sie die Nullstelle(n) der Ableitungsfunktion und deuten Sie das Ergebnis geometrisch.

e) Ermitteln Sie die Gleichung der Tangente \(T\) an \(G_{f}\) an der Stelle \(x = 2\).

 

Aufgabe 3

a) Berechnen Sie die Ableitung folgender Funktionen mithilfe der Ableitungsregeln ohne anschließend zu vereinfachen.

 

α) \(f(x) = 3x^{4} - \dfrac{3}{x} + 6\)

β) \(g(x) = (2x - 3)(x^{2} - t)\)

γ) \(h(x) = \dfrac{3x - 5}{3 - x^{3}}\)

 

b) Bestimmen Sie eine Stammfunktion der Funktion \(f \colon x \mapsto 3x^{4} + \dfrac{3}{x^{3}} - 4\).

 

Aufgabe 4

Gegeben ist die Funktion \(f \colon x \mapsto 4x^{2} - 1\).

 

a) Bestimmen Sie die mittlere Änderungsrate auf dem Intervall \([1;3]\).

b) Bestimmen Sie \(f'(2)\) unter Verwendung des Differentialquotienten.

 

Aufgabe 5

Florian behauptet: „Sind die Ableitungen von zwei Funktionen gleich, so sind auch die Funktionen selbst gleich."

Nehmen Sie zu Florians Aussage begründend Stellung.

 

Aufgabe 6

Ordnen Sie die Graphen I bis VI den freien Feldern der Tabelle so zu, dass unter einem Funktionsgraphen jeweils der Graph seiner Ableitung zu sehen ist und beschriften Sie die Felder entsprechend. Begründen Sie Ihre Wahl für die erste Spalte.

Hinweis: Die Skalierung der Koordinatenachsen ist für alle abgebildeten Graphen dieselbe.

 

Funktionsgraph links oben der Tabelle zu Aufgabe 6    
  Funktionsgraph mittig der Tabelle zu Aufgabe 6   
    Funktionsgraph rechts unten der Tabelle zu Aufgabe 6 

 

Graphen I bis VI:

Graph I Graph II Graph III
Graph IV Graph V Graph VI

Teilaufgabe 2d

Weisen Sie mithilfe des Terms der Funktion \(P\) nach, dass \(\lim \limits_{x\,\to\,+\infty} P(x) = 1\) gilt, und interpretieren Sie diesen Grenzwert im Sachzusammenhang.

(2 BE)

Teilaufgabe 1c

Zusätzlich ist die Funktion \(F\) mit \(F(x) = 2e^{-x} - 2e^{-2x}\) und \(x \in \mathbb R\) gegeben.

Zeigen Sie, dass \(F\) eine Stammfunktion von \(f\) ist, und begründen Sie anhand des Terms von \(F\), dass \(\lim \limits_{x \, \to \,+\infty} F(x) = 0\) gilt.

(3 BE)