Verschiebung von Funktionsgraphen

Teilaufgabe 2c

Der Graph der Funktion \(g^{*}\) geht aus \(G_{g}\) durch Strecken und Verschieben hervor. Die Wertemenge von \(g^{*}\) ist \(]-1;1[\). Geben Sie einen möglichen Funktionsterm für \(g^{*}\) an.

(2 BE)

Teilaufgabe 3a

Betrachtet wird die in \(\mathbb R\) definierte Funktion \(p \colon x \mapsto \dfrac{40}{(x - 12)^{2} + 4}\); die Abbildung zeigt den Graphen \(G_{p}\) von \(p\).

Abbildung Aufgabe 3 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2021

Beschreiben Sie, wie \(G_{p}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(h \colon x \mapsto \dfrac{5}{x^{2} + 4}\) schrittweise hervorgeht, und begründen Sie damit, dass \(G_{p}\) bezüglich der Geraden mit der Gleichung \(x = 12\) symmetrisch ist.

(4 BE)

Teilaufgabe 1a

Gegeben ist die Funktion \(f\) mit \(f(x) = \sqrt{x - 2} + 1\) und maximalem Definitionsbereich.

Zeichnen Sie den Graphen von \(f\) im Bereich \(2 \leq x \leq 11\) in ein Koordinatensystem.

(3 BE)

Teilaufgabe 2b

Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

\[W =\; ]3;+\infty[\]

(2 BE)

Teilaufgabe 2a

Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(W\) hat.

\[W =\; ]-\infty;1]\]

(2 BE)

Teilaufgabe 3a

Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

(3 BE)

Teilaufgabe i

Wird die zweite Tablette zweieinhalb Stunden nach der ersten Tablette eingenommen, so kann die Wirkstoffkonzentration für \(x \in [2{,}5;9]\) mit einem der folgenden Terme beschrieben werden. Wählen Sie den passenden Term aus und begründen Sie Ihre Wahl.

(A) \(\quad f(x) + f(x + 2{,}5)\)

(B) \(\quad f(x) + f(x - 2{,}5)\)

(C) \(\quad f(x - 2{,}5) + f(2{,}5)\)

(D) \(\quad f(x) - f(x - 2{,}5)\)

(3 BE)

Teilaufgabe 1c

Beschreiben Sie, wie \(G_{f}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln{x}\) hervorgeht. Erklären Sie damit das Monotonieverhalten von \(G_{f}\).

(5 BE)

Teilaufgabe 1c

\(G_{f}\) geht aus dem Graphen der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto \frac{1}{18} \cdot (x^{3} - 25x)\) durch Verschiebung in positive \(x\)-Richtung hervor. Ermitteln Sie, um wie viel der Graph von \(g\) dazu verschoben werden muss. Begründen Sie mithilfe der Funktion \(g\), dass der Graph von \(f\) symmetrisch bezüglich seines Wendepunkts ist.

(4 BE)

Teilaufgabe 2b

Die beschriebene Spiegelung von \(G_{f}\) an der Geraden \(x = 4\) kann durch eine Spiegelung von \(G_{f}\) an der \(y\)-Achse mit anschließender Verschiebung ersetzt werden. Beschreiben Sie diese Verschiebung und geben Sie \(a, b \in \mathbb R\) an, sodass \(g(x) = f(ax + b)\) für \(x \in \; ]-\infty;8[\) gilt.

(3 BE)