Anzeige nach Tag: Volumen eines Prismas

Teilaufgabe 2e

Das Volumen des Wassers im Aquarium lässt sich analog zum Rauminhalt eines Prismas mit Grundfläche \(G\) und Höhe \(h\) berechnen. Erläutern Sie, dass der Term \(\displaystyle 24 \cdot \int_{0{,}2}^{4} \left( f(0{,}2) - f(x) \right) dx\) das Wasservolumen im vollgefüllten Aquarium in Kubikmetern beschreibt.

(3 BE)

Teilaufgabe a

In einem kartesischen Koordinatensystem sind die Punkte \(A\,(10|2|0)\), \(B\,(10|8|0)\), \(C\,(10|4|3)\), \(R\,(2|2|0)\), \(S\,(2|8|0)\) und \(T\,(2|4|3)\) gegeben. Der Körper \(ABCRST\) ist ein gerades dreiseitiges Prisma mit der Grungfläche \(ABC\), der Deckfläche \(RST\) und rechteckigen Seitenflächen.

Zeichen Sie das Prisma in ein kartesisches Koordinatensystem (vgl. Abbildung) ein. Welche besondere Lage im Koordinatensystem hat die Grundfläche \(ABC\,\)? Berechnen Sie das Volumen des Prismas.
Abbildung: Koordinatensystem

(6 BE)

Teilaufgabe d

Die Ebene \(F\) enthält die Gerade \(CT\) und zerlegt das Prisma in zwei volumengleiche Teilkörper. Wählen Sie einen Punkt \(P\) so, dass er gemeinsam mit den Punkten \(C\) und \(T\) die Ebene \(F\) festlegt; begründen Sie Ihre Wahl. Tragen Sie die Schnittfigur von \(F\) mit dem Prisma in Ihre Zeichnung ein.

(3 BE)