Vorzeichenwechsel

Teilaufgabe 1b

Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

(Teilergebniss: \(x\)-Koordinate des Extrempunkts: \(\ln 4\))

(4 BE)

Teilaufgabe 2d

In einem anderen Becken ändert sich das Volumen des darin enthaltenen Wassers ebenfalls durch Zu- und Abfluss. Die momentane Änderungsrate des Volumens wird für \(0 \leq t \leq 12\) modellhaft durch die in \(\mathbb R\) definierte Funktion \(g \colon t \mapsto 0{,}4 \cdot (2t^{3} - 39t^{2} + 180t)\) beschrieben. Dabei ist \(t\) die seit Beobachtungsbeginn vergangene Zeit in Stunden und \(g(t)\) die momentane Änderungsrate des Volumens in \(\frac{\sf{m^{3}}}{\sf{h}}\).

Begründen Sie, dass die Funktionswerte von \(g\) für \(0 < t < 7{,}5\) positiv und für \(7{,}5 < t < 12\) negativ sind.

(4 BE)