Wendepunkt

Teilaufgabe 2e

Skizzieren Sie den Graphen der Funktion \(A\) unter Verwendung der bisherigen Ergebnisse in der Abbildung 2.

Abbildung 2 Analysis 2 Prüfungsteil B Mathematik Abitur Bayern 2020

(3 BE)

Teilaufgabe 2d

Nur zu dem Zeitpunkt, der im Modell durch \(x_{0}\) (vgl. Aufgabe 2b) beschrieben wird, nimmt die momentane Änderungsrate des Flächeninhalts des Algenteppichs ihren größten Wert an. Geben Sie eine besondere Eigenschaft des Graphen von \(A\) im Punkt \((x_{0}|A(x_{0}))\) an, die sich daraus folgern lässt, und begründen Sie Ihre Angabe.

(2 BE)

Teilaufgabe 4

Die Abbildung 2 zeigt den Graphen \(G_{f}\) einer in \([0{,}8; +\infty[\) definierten Funktion f.

Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

Betrachtet wird zudem die in \([0{,}8; +\infty[\) definierte Integralfunktion \(\displaystyle J \colon x \mapsto \int_{2}^{x} f(t) dt\).

Begründen Sie mithilfe von Abbildung 2, dass \(J(1) \approx -1\) gilt, und geben Sie einen Näherungswert für den Funktionswert \(J(4{,}5)\) an. Skizzieren Sie den Graphen von \(J\) in der Abbildung 2.

(5 BE)

Teilaufgabe 2a

Die Abbildung 1 zeigt den Graphen \(G_{f'}\) der Ableitungsfunktion \(f'\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(f\). Nur in den Punkten \((-4|f'(-4))\) und \((5|f'(5))\) hat der Graph \(G_{f'}\) waagrechte Tangenten.

Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

Begründen Sie, dass \(f\) genau eine Wendestelle besitzt. 

(2 BE)

Teilaufgabe f

An der Stelle \(x = 2\) hat \(G_{f}\) einen Wendepunkt. Beschreiben Sie, wie man rechnerisch vorgehen könnte, um dies zu begründen. Geben Sie die Bedeutung der \(x\)-Koordinate des Wendepunkts im Sachzusammenhang an.

(3 BE)

Teilaufgabe 3c

Bestimmen Sie den Wert von \(k\) so, dass der zugehörige Wendepunkt \(W_{k}\) auf der \(y\)-Achse liegt. Zeigen Sie, dass in diesem Fall der Punkt \(W_{k}\) im Koordinatenursprung liegt und die Wendetangente, d. h. die Tangente an \(G_{k}\) im Punkt \(W_{k}\), die Steigung \(9\) hat.

(4 BE)

Teilaufgabe 3b

Bestimmen Sie die \(x\)-Koordinate von \(W_{k}\) in Abhängigkeit von \(k\).

(zur Kontrolle: \(x = -\frac{1}{k} - 1\))

(3 BE)

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) im Punkt \(W(5|0)\) einen Wendepunkt besitzt, und ermitteln Sie eine Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(6 BE)

Teilaufgabe 1b

Zeigen Sie, dass \(G_{f}\) genau einen Wendepunkt \(W\) besitzt, und bestimmen Sie dessen Koordinaten sowie die Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

(zur Kontrolle: \(x\)-Koordinate von \(W\): \(e\))

(6 BE)

Teilaufgabe 4

Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f\) mit dem Wendepunkt \(W(1|4)\).

Ermitteln Sie mithilfe der Abbildung näherungsweise den Wert der Ableitung von \(f\) an der Stelle \(x = 1\).

Skizzieren Sie den Graphen der Ableitungsfunktion \(f'\) von \(f\) in die Abbildung; berücksichtigen Sie dabei insbesondere die Lage der Nullstellen von \(f'\) sowie den für \(f'(1)\) ermittelten Näherungswert.

Abbildung Aufgabe 3 Analysis 1 Mathematik Abitur Bayern 2018 A

(3 BE)