Ziehen mit Zurücklegen und mit Beachtung der Reihenfolge

Teilaufgabe 1d

Das Glücksrad wird viermal gedreht und die Abfolge der Farben als Ergebnis notiert. Bestimmen Sie die Anzahl der möglichen Ergebnisse, in denen die Farbe Blau nicht vorkommt.

(2 BE)

Teilaufgabe 1b

Beschreiben Sie im Sachzusammenhang jeweils ein Ereignis, dessen Wahrscheinlichkeit durch den angegebenen Term berechnet werden kann.

α) \(\displaystyle 1 - \left( \frac{3}{5} \right)^{8}\)

β) \(\displaystyle \left( \frac{3}{5} \right)^{8} + 8 \cdot \frac{2}{5} \cdot \left( \frac{3}{5} \right)^{7}\)

(3 BE)

Teilaufgabe 4a

Bei jeder Aufführung wird der Vorhang 15-mal geschlossen; dafür ist ein automatischer Mechanismus vorgesehen. Erfahrungsgemäß funktioniert der Mechanismus bei jedem Schließen des Vorhangs mit einer Wahrscheinlichkeit von 90 %. Nur dann, wenn der Mechanismus nicht funktioniert, wird der Vorhang von Hand zugezogen.

Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

\(A\,\): "Bei einer Aufführung wird der Vorhang kein einziges Mal von Hand zugezogen."

\(B\,\): "Bei einer Aufführung lässt sich der Vorhang zunächst viermal automatisch schließen, insgesamt wird der Vorhang jedoch genau zweimal von Hand zugezogen."

(5 BE)

Teilaufgabe 4b

Beschreiben Sie ein Urnenexperiment, mit dem sich das Verhalten des Mechanismus bei 15-maligem Schließen des Vorhangs simulieren lässt.

(2 BE)

Teilaufgabe 2b

Zehn Besucher des Gemeindefests drehen nacheinander jeweils einmal das Glücksrad. Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem sich die Wahrscheinlichkeit des Ereignisses berechnen lässt.

\(A\): "Nur die ersten fünf Preise entfallen auf die Kategorie 4."

\(B\): "Genau die Hälfte der Preise entfällt auf die Kategorie 4."

\(C\): "Die Preise verteilen sich jeweils zur Hälfte auf die Kategorien 1 und 4."

(5 BE)