Ziehen ohne Zurücklegen und ohne Beachtung der Reihenfolge

Teilaufgabe 1b

Im Rahmen der Begrüßung durch die Schulleiterin werden aus allen Spielerinnen und Spielern zunächst zehn Kinder ausgelost, die je einen Fußball erhalten sollen. Um die Wahrscheinlichkeit dafür zu berechnen, dass fünf Mädchen und fünf Jungen einen Ball erhalten, verwendet Max den Ansatz

\(\binom{10}{5} \cdot \left( \frac{2}{3} \right)^{5} \cdot \left( \frac{1}{3} \right)^{5}\).

Geben Sie an, ob Max dabei vom Modell „Ziehen mit Zurücklegen" oder vom Modell „Ziehen ohne Zurücklegen" ausgeht. Begründen Sie rechnerisch unter Zugrundelegung eines im Sachkontext realistischen Zahlenwerts für die Gesamtzahl der Spielerinnen und Spieler, dass die von Max berechnete Wahrscheinlichkeit nur geringfügig von der tatsächlichen Wahrscheinlichkeit abweicht.

(5 BE)

Teilaufgabe a

Gegeben sind grüne und rote Würfel, deren Seitenflächen unterschiedlich beschriftet sind und beim Werfen mit jeweils gleicher Wahrscheinlichkeit auftreten. Jeder grüne Würfel trägt auf fünf Seitenflächen die Augenzahl 1 und auf einer die Augenzahl 6. Jeder rote Würfel trägt auf jeweils zwei Seitenflächen die Augenzahlen 1, 3 bzw. 6.

In einer Urne befinden sich drei grüne Würfel und zwei rote Würfel. Der Urne werden mit einem Griff zwei Würfel zufällig entnommen. Geben Sie einen Term an, mit dem man die Wahrscheinlichkeit dafür bestimmen kann, dass ein roter Würfel und ein grüner Würfel entnommen werden.

(2 BE)

Teilaufgabe 2a

In einem Parkhaus befinden sich insgesamt 100 Parkplätze.

Im Parkhaus sind 20 Parkplätze frei; vier Autofahrer suchen jeweils einen Parkplatz. Formulieren Sie in diesem Sachzusammenhang zu den folgenden Termen jeweils eine Aufgabenstellung, deren Lösung sich durch den Term berechnen lässt.

\[\sf{α)} \; 20 \cdot 19 \cdot 18 \cdot 17 \qquad \qquad \sf{β)} \; \binom{20}{4}\]

(3 BE)

Teilaufgabe 2c

30 der im Parkhaus stehenden Autos werden zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass darunter genau 40 % mit ESP ausgerüstet sind.

(4 BE)

Teilaufgabe 1b

Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis \(A\) eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.

(2 BE)

Teilaufgabe 2b

Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit durch den folgenden Term berechnet werden kann.

\[\dfrac{\displaystyle \binom{14}{4} - \binom{6}{4}}{\displaystyle \binom{14}{4}}\]

(2 BE)

Teilaufgabe 2a

An einem P-Seminar nehmen acht Mädchen und sechs Jungen teil, darunter Anna und Tobias. Für eine Präsentation wird per Los aus den Teilnehmerinnen und Teilnehmern ein Team aus vier Personen zusammengestellt.

Geben Sie zu jedem der folgenden Ereignisse einen Term an, mit dem die Wahrscheinlichkeit des Ereignisses berechnet werden kann.

\(A\): „Anna und Tobias gehören dem Team an."

\(B\): „Das Team besteht aus gleich vielen Mädchen und Jungen."

(3 BE)

Teilaufgabe 2b

Von den 30 Senioren im Publikum besitzen 24 ein Mobiltelefon. Im Verlauf der Sendung werden drei der Senioren aus dem Publikum zufällig ausgewählt und nach ihrer Meinung befragt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass genau zwei der drei Senioren ein Mobiltelefon besitzen.

(3 BE)