Zufallsgröße

Teilaufgabe 3c

Die Zufallsgröße \(Z\), die für eine Laplace-Münze die Anzahl des Auftretens von „Zahl" bei viermaligem Werfen beschreibt, hat ebenfalls den Erwartungswert 2 und es gilt analog \(P(Z = 2) = \frac{3}{8}\). Berechnen Sie die Varianz von \(Z\), vergleichen Sie diese mit der Varianz von \(Y\) und beschreiben Sie davon ausgehend einen qualitativen Unterschied der Wahrscheinlichkeitsverteilung von \(Z\) und \(Y\).

(2 BE)

Teilaufgabe 3a

Die Zufallsgröße \(Y\) kann die Werte 0, 1, 2, 3 und 4 annehmen. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(Y\) mit \(a, b \in [0;1]\).

Tabelle Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2020

Beschreiben Sie, woran man unmittelbar erkennen kann, dass der Erwartungswert von \(Y\) gleich 2 ist.

(2 BE)

Teilaufgabe a

Ein Glücksrad besteht aus zwei unterschiedlich großen Sektoren. Der größere Sektor ist mit der Zahl 1 und der kleinere mit der Zahl 3 beschriftet. Die Wahrscheinlichkeit dafür, beim einmaligen Drehen des Glücksrads die Zahl 1 zu erzielen, wird mit \(p\) bezeichnet. Das Glücksrad wird zweimal gedreht.

Begründen Sie, dass die Wahrscheinlichkeit dafür, dass die Summe der beiden erzielten Zahlen 4 ist, durch den Term \(2p \cdot (1- p)\) angegeben wird.

(1 BE)

Teilaufgabe b

Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

(4 BE)

Teilaufgabe b

Ein grüner Würfel und ein roter Würfel werden gleichzeitig geworfen. Die Zufallsgröße \(X\) beschreibt die Summe der beiden geworfenen Augenzahlen. Geben Sie alle Werte an, die die Zufallsgröße \(X\) annehmen kann, und bestimmen Sie die Wahrscheinlichkeit \(P(X = 7)\).

(3 BE)

Teilaufgabe 3a

Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

(5 BE)

Teilaufgabe 2

Bei einer Losbude wird damit geworben, dass jedes Los gewinnt. Die Lose und die zugehörigen Sachpreise können drei Kategorien zugeordnet werden, die mit „Donau", „Main" und „Lech" bezeichnet werden. Im Lostopf befinden sich viermal so viele Lose der Kategorie „Main" wie Lose der Kategorie „Donau". Ein Los kostet 1 Euro. Die Inhaberin der Losbude bezahlt im Einkauf für einen Sachpreis in der Kategorie „Donau" 8 Euro, in der Kategorie „Main" 2 Euro und in der Kategorie „Lech" 20 Cent. Ermitteln Sie, wie groß der Anteil der Lose der Kategorie „Donau" sein muss, wenn die Inhaberin im Mittel einen Gewinn von 35 Cent pro Los erzielen will.

(5 BE)

Teilaufgabe 2d

Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

Ermitteln Sie die zugehörige Entscheidungsregel.

(5 BE)

Teilaufgabe 2

Die Zufallsgröße \(X\) kann ausschließlich die Werte \(1\), \(4\), \(9\) und \(16\) annehmen. Bekannt sind \(P(X = 9) = 0{,}2\) und \(P(X = 16) = 0{,}1\) sowie der Erwartungswert \(E(X) = 5\). Bestimmen Sie mithilfe eines Ansatzes für den Erwartungswert die Wahrscheinlichkeit \(P(X = 1)\) und \(P(X = 4)\).

(3 BE)

Teilaufgabe 2b

Bei dem Spiel ist zu erwarten, dass sich die Einsätze der Spieler und die Auszahlungen auf lange Sicht ausgleichen. Berechnen Sie den Betrag, der ausgezahlt wird, wenn drei verschiedene Farben erscheinen.

(3 BE)