Anzeige nach Tag: gebrochenrationale Funktion

Teilaufgabe c

Begründen Sie, dass \(G_{f}\) für \(x < 0\) nur im III. Quadranten verläuft, und zeichnen Sie in die Abbildung den darin fehlenden Teil von \(G_{f}\) ein. Berechnen Sie dazu \(f(-3)\) und drei weitere geeignete Funktionswerte von \(f\).

(4 BE)

Teilaufgabe b

Bestimmen Sie rechnerisch Lage und Art des Extrempunkts von \(G_{f}\).

(5 BE)

Teilaufgabe a

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{4x}{(x + 1)^{2}}\) mit Definitionsmenge \(D_{f} = \mathbb R \backslash \{-1\}\). Die Abbildung zeigt den Verlauf des Graphen \(G_{f}\) von \(f\) im I. Quadranten.

Abbildung Aufgabe a Analysis 2 Mathematik Abitur Bayern 2019 B

Begründen Sie, dass \(x = 0\) die einzige Nullstelle von \(f\) ist. Geben Sie die Gleichung der senkrechten Asymptote von \(G_{f}\) an und begründen Sie anhand des Funktionsterms von \(f\), dass \(G_{f}\) die Gerade mit der Gleichung \(y = 0\) als waagrechte Asymptote besitzt.

(3 BE)

Teilaufgabe 2a

Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(f \colon x \mapsto 1 - \dfrac{1}{x^{2}}\), die die Nullstellen \(x_{1} = -1\) und \(x_{2} = 1\) hat. Abbildung 1 zeigt den Graphen von f, der symmetrisch bezüglich der \(y\)-Achse ist. Weiterhin ist die Gerade \(g\) mit der Gleichung \(y = -3\) gegeben.

Abbildung 1 Aufgabe 2a Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 1

Zeigen Sie, dass einer der Punkte, in denen \(g\) den Graphen von \(f\) schneidet, die \(x\)-Koordinate \(\frac{1}{2}\) hat.

(1 BE)

Teilaufgabe 2a

Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(f \colon x \mapsto 1 - \dfrac{1}{x^{2}}\), die die Nullstellen \(x_{1} = -1\) und \(x_{2} = 1\) hat. Abbildung 1 zeigt den Graphen von f, der symmetrisch bezüglich der \(y\)-Achse ist. Weiterhin ist die Gerade \(g\) mit der Gleichung \(y = -3\) gegeben.

Abbildung 1 Aufgabe 2a Analysis 1 Mathematik Abitur Bayern 2019 AAbb. 1

Zeigen Sie, dass einer der Punkte, in denen \(g\) den Graphen von \(f\) schneidet, die \(x\)-Koordinate \(\frac{1}{2}\) hat.

(1 BE)

Teilaufgabe 1e

Die gebrochen-rationale Funktion \(h \colon x \mapsto 1{,}5x - 4{,}5 + \frac{1}{x}\) mit \(x \in \mathbb R \backslash \{0\}\) stellt in einem gewissen Bereich eine gute Näherung für \(f\) dar.

Geben Sie die Gleichungen der beiden Asymptoten des Graphen von \(h\) an.

(2 BE)

Teilaufgabe 2

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Teilaufgabe 3

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = -x^{3} + 9x^{2} -15x -25\). Weisen Sie nach, dass \(f\) folgende Eigenschaften besitzt:

(1) Der Graph von \(f\) besitzt an der Stelle \(x = 0\) die Steigung \(-15\).

(2) Der Graph von \(f\) besitzt im Punkt \(A(5|f(5))\) die \(x\)-Achse als Tangente.

(3) Die Tangente \(t\) an den Graphen der Funktion \(f\) im Punkt \(B(-1|f(-1))\) kann durch die Gleichung \(y = -36x - 36\) beschrieben werden.

(5 BE)

Teilaufgabe 1

Geben Sie für die Funktionen \(f_{1}\) und \(f_{2}\) jeweils die maximale Definitionsmenge und die Nullstelle an.

\[f_{1} \colon x \mapsto \frac{2x + 3}{x^{2} - 4}\]

\[f_{2} \colon x \mapsto \ln{(x + 2)}\]

(4 BE)

Aufgaben

!!! Derzeit in Bearbeitung !!!

 

Aufgabe 1

Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{8x}{x^{2} + 4}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Überprüfen Sie das Symmetrieverhalten von \(G_{f}\) bezüglich des Koordinatensystems.

b) Bestimmen Sie den maximalen Definitionsbereich der Funktion \(f\) und ermitteln Sie das Verhalten von \(f\) an den Rändern des Definitionsbereichs. Geben Sie die Gleichungen aller Asymptoten von \(G_{f}\) an.

c) Weisen Sie nach, dass der Graph \(G_{f}\) durch den Koordinatenursprung \(O(0|0)\) verläuft und berechnen Sie die Größe des Winkels, unter dem \(G_{f}\) die \(x\)-Achse schneidet.

(Teilergebnis: \(f'(x) = -\dfrac{8(x^{2} - 4)}{(x^{2} + 4)^{2}}\))

d) Bestimmen Sie die Lage und die Art der Extrempunkte von \(G_{f}\).

e) Zeichnen Sie den Graphen \(G_{f}\) unter Berücksichtigung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

 

Aufgabe 2

Der Graph \(G_{f}\) einer gebrochenrationalen Funktion \(f\) hat folgende Eigenschaften:

\(G_{f}\) hat genau die zwei Nullstellen \(x = 0\) und \(x = 4\).

\(G_{f}\) hat genau die zwei Polstellen mit Vorzeichenwechsel \(x = -1\) und \(x = 2\).

\(G_{f}\) hat eine waagrechte Asymptote mit der Gleichung \(y = 2\).

 

a) Geben Sie einen möglichen Funktionsterm der Funktion \(f\) an und Skizzieren Sie den Graphen der Funktion \(f\).

b) „Der Funktionsterm \(f(x)\) ist durch die genannten Eigenschaften eindeutig bestimmt." Nehmen Sie zu dieser Aussage begründend Stellung.

 

Aufgabe 3

Gegeben ist die in \(\mathbb R\) definierte  Funktionenschar \(f_{a}(x) = x^{3} - ax + 3\) mit \(a \in \mathbb R\). Die Kurvenschar der Funktionenschar \(f_{a}\) wird mit \(G_{f_{a}}\) bezeichnet.

 

Bestimmen Sie den Wert des Parameters \(a\) so, dass der zugehörige Graph der Kurvenschar \(G_{f_{a}}\)

a) zwei Extrempunkte

b) einen Terrassenpunkt

besitzt.

 

Aufgabe 4

Abbildung zu Aufgabe 4 Klausur Q11/1-004

Nach der Einnahme eines Medikaments wird die Konzentration \(K\) des Medikaments im Blut eines Patienten gemessen.

Die Funktion \(K \colon t \mapsto \dfrac{100t}{t^{2} + 25}\) mit \(t \geq 0\) beschreibt näherungsweise den Verlauf \(K(t)\) der Konzentration des Medikaments in Milligramm pro Liter in Abhängigkeit von der Zeit \(t\) in Stunden (vgl. Abbildung).

 

a) Bestimmen Sie den Zeitpunkt nach der Einnahme des Medikaments, zu dem die Konzentration \(K\) des Medikaments im Blut des Patienten noch 10 % der maximalen Konzentration beträgt auf Minuten genau.

(Teilergebnis: \(K'(t) = -\dfrac{100(t^{2} - 25)}{(t^{2} + 25)^{2}}\))

b) Berechnen Sie die mittlere Änderungsrate der Konzentration \(K\) im Zeitintervall \([10;20]\) und interpretieren Sie das Ergebnis im Sachzusammenhang.

 

Aufgabe 5

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto f(x)\) mit

 

\[f(x) = \vert 2x - 4 \vert = \begin{cases} \begin{align*} 2x - 4 \; \text{falls} \; &x \geq 0 \\[0.8em] -(2x - 4) \; \text{falls} \; &x < 0 \end{align*} \end{cases}\]

 

Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

 

a) Skizzieren Sie \(G_{f}\) in ein geeignetes Koordinatensystem und begründen Sie geometrisch, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.

b) Bestätigen Sie durch Rechnung, dass die Funktion \(f\) an der Stelle \(x = 2\) nicht differenzierbar ist.