parallele Vektoren

Teilaufgabe a

Die Abbildung zeigt den Würfel \(ABCDEFG\) mit \(A(0|0|0)\) und \(G(5|5|5)\) in einem kartesischen Koordinatensystem. Die Ebene \(T\) schneidet die Kanten des Würfels unter anderem in den Punkten \(I(5|0|1)\), \(J(2|5|0)\), \(K(0|5|2)\) und \(L(1|0|5)\).

Abbildung Geometrie 2 Mathematik Abitur Bayern 2019 B

Zeichnen Sie das Viereck \(IJKL\) in die Abbildung ein und zeigen Sie, dass es sich um ein Trapez handelt, bei dem zwei gegenüberliegende Seiten gleich lang sind.

(4 BE)

Teilaufgabe c

Zeigen Sie, dass die Kletterwand die Form eines Trapezes hat.

(2 BE)

Lösung - Aufgabe 5

Die Punkte \(A(3|-1|5)\), \(B(5|3|1)\) und \(C(7|-3|9)\) legen das Dreieck \(ABC\) fest.

 

a) Weisen Sie nach, dass das Dreieck \(ABC\) gleichschenklig ist.

b) Berechnen Sie die Maßzahl des Flächeninhalts des Dreiecks \(ABC\).

c) Berechnen Sie die Koordinaten des Punktes \(D\), der das Dreieck \(ABC\) zu einer Raute ergänzt.

d) Berechnen Sie den Winkel \(\measuredangle{DBA} = \varphi\).

e) Der Punkt \(S(4,6,10)\) ist die Spitze der Pyramide \(ABCS\), deren Grundfläche das Dreieck \(ABC\) ist. Weisen Sie nach, dass die Strecke \([MS]\) des Mittelpunkts \(M\) der Grundkante \([BC]\) und der Pyramidenspitze \(S\) die Höhe der Pyramide \(ABCS\) ist.

f) Berechnen Sie die Maßzahl des Volumens der Pyramide \(ABCS\).

Teilaufgabe c

Der Polstab wird im Modell durch die Strecke \([MS]\) mit \(S\,(4{,}5|0|4{,}5)\) dargestellt. Zeigen Sie, dass der Polstab senkrecht auf der Grundplatte steht, und berechnen Sie die Länge des Polstabs auf Zentimeter genau.

(3 BE)

Teilaufgabe c

Die Dachfläche, auf der die Dachgaube errichtet wird, liegt im Modell in der Ebene \(E\,\colon\, 3x_1 + 4x_3 - 44 = 0\).

Die Dachgaube soll so errichtet werden, dass sie von dem seitlichen Rand der Dachfläche, der im Modell durch die Strecke \([HC]\) dargestellt wird, den Abstand 2 m und vom First des Dachs den Abstand 1 m hat. Zur Ermittlung der Koordinaten des Punkts \(M\) wird die durch den Punkt \(T\,(4|8|8)\) verlaufende Gerade \(\displaystyle t\,\colon\, \overrightarrow{X} = \begin{pmatrix} 4 \\ 8 \\ 8 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}\), \(\lambda \in \mathbb R\), betrachtet.

Begründen Sie, dass \(t\) in der Ebene \(E\) verläuft und von der Geraden \(HC\) den Abstand 2 besitzt.

(5 BE)