rechtwinkliges Dreieck

  • Die Punkte \(M\) und \(P\) sind die Mittelpunkte der Kanten \([AD]\) bzw. \([BC]\). Der Punkt \(K\,(0|y_K|4)\) liegt auf der Kante \([DF]\). Bestimmen Sie \(y_K\) so, dass das Dreieck \(KMP\) in \(M\) rechtwinklig ist.

    (3 BE)

  • Berechnen Sie auf der Grundlage des Modells die Größe des Winkels, den das Seil mit Mast 2 im Aufhängepunkt einschließt, sowie mithilfe der Kurvenlänge aus Aufgabe 1h die Länge des zwischen den Masten hängenden Seils auf Zentimeter genau.

    (5 BE)

  • Die Tangente an den Graphen von \(f\) im Punkt \(S(0|1)\) begrenzt mit den beiden Koordinatenachsen ein Dreieck. Weisen Sie nach, dass dieses Dreieck gleichschenklig ist.

    (3 BE)

  • Die Tangente an den Graphen von \(f\) im Punkt \(S(0|1)\) begrenzt mit den beiden Koordinatenachsen ein Dreieck. Weisen Sie nach, dass dieses Dreieck gleichschenklig ist.

    (3 BE)

  • Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

    Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

    (2 BE)

  • Gegeben sind die beiden bezüglich der \(x_{1}x_{3}\)-Ebene symmetrisch liegenden Punkte \(A(2|3|1)\) und \(B(2|-3|1)\) sowie der Punkt \(C(0|2|0)\).

    Weisen Sie nach, dass das Dreieck \(ABC\) bei \(C\) rechtwinklig ist.

    (3 BE)

  • Gegeben ist die Ebene \(E \colon 2x_{1} + x_{2} - 2x_{3} = -18\).

    Der Schnittpunkt von \(E\) mit der \(x_{1}\)-Achse, der Schnittpunkt von \(E\) mit der \(x_{2}\)-Achse und der Koordinatenursprung sind die Eckpunkte eines Dreiecks. Bestimmen Sie den Flächeninhalt dieses Dreiecks.

    (2 BE)

  • Begründen Sie ohne weitere Rechnung, dass das Dreieck \(PQR\) bei \(R\) rechtwinklig ist.

    (2 BE)

  • Von den Eckpunkten des Rechtecks \(ABCD\) liegen der Punkt \(A(s|0)\) mit \(s \in \;]0;5[\) sowie der Punkt \(B\) auf der \(x\)-Achse, die Punkte \(C\) und \(D\) liegen auf \(G_f\). Das Rechteck besitzt somit die Gerade mit der Gleichung \(x = 5\) als Symmetrieachse. Zeigen Sie, dass die Diagonalen dieses Rechtecks jeweils die Länge 10 besitzen.

    (5 BE)

  • Gegeben sind die Punkte \(P(4|5|-19)\), \(Q(5|9|-18)\) und \(R(3|7|-17)\), die in der Ebene \(E\) liegen, sowie die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} -12 \\ 11 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \; \lambda \in \mathbb R\).

    Bestimmen Sie die Länge der Strecke \([PQ]\). Zeigen Sie, dass das Dreieck \(PQR\) bei \(R\) rechtwinklig ist, und begründen Sie damit, dass die Strecke \([PQ]\) Durchmesser des Umkreises des Dreiecks \(PQR\) ist.

    (zur Kontrolle: \(\overline{PQ} = 3\sqrt{2}\))

    (4 BE)

  • Drei kleine farbenfrohe Seesterne befinden sich am Meeresboden und werden im Modell durch die Punkte \(P\), \(Q\) und \(R\) dargestellt. Der Fotograf bewegt sich für seine Aufnahmen von der Stelle aus, die im Modell durch den Punkt \(K\) beschrieben wird, parallel zum Meeresboden und hat ein kegelförmiges Sichtfeld mit einem Öffnungswinkel von 90° (vgl. Abbildung).

    Beurteilen Sie, ob der Fotograf auf diese Weise eine Stelle erreichen kann, an der er alle drei Seesterne gleichzeitig im Sichtfeld der Kamera sehen kann.

    (3 BE)

  • Zeichnen Sie die Pyramide \(EFGHS_{15}\) in Abbildung 1 ein. Die Seitenfläche \(EFS_{15}\) und die Grundfläche \(EFGH\) dieser Pyramide schließen einen Winkel ein. Begründen Sie ohne weitere Rechnung, dass die Größe dieses Winkels kleiner als 45° ist; verwenden Sie dazu folgende Information:

    Für den Mittelpunkt \(M\) des Quadrats \(EFGH\) und den Punkt \(N\) mit \( \overrightarrow{N} = \dfrac{1}{2} \cdot (\overrightarrow{E} + \overrightarrow{F})\) gilt  \(\overline{MS_{15}} < \overline{MN}\).

    (4 BE) 

  • Auf der Kante \([AD]\) liegt der Punkt \(Q\), auf der Kante \([BE]\) der Punkt \(R(0|6|2)\). Das Dreieck \(FQR\) hat in \(Q\) einen rechten Winkel. Bestimmen Sie die \(x_3\)-Koordinate von \(Q\).

    (5 BE) 

  • Alle Punkte \(C^\ast\) im Raum, die zusammen mit \(A\) und \(B\) ein zum Dreieck \(ABC\) kongruentes Dreieck festlegen, bilden zwei gleich große Kreise. Beschreiben Sie (z.B. durch eine Skizze) die Lage der beiden Kreise bezüglich der Strecke \([AB]\) und ermitteln Sie den Radius der beiden Kreise.

    (6 BE)

  • In einem kartesischen Koordinatensystem sind die Punkte \(A\,(1|7|3)\), \(B\,(6|-7|1)\) und \(C\,(-2|1|-3)\) gegeben.

    Weisen Sie nach, dass die Punkte \(A\), \(B\) und \(C\) ein rechtwinkliges Dreieck festlegen, dessen Hypothenuse die Strecke \([AB]\) ist und dessen kürzere Kathete die Länge 9 hat.

    (4 BE)