schräge Asymptote

Teilaufgabe 2a

Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

(3 BE)

Teilaufgabe 1e

Die gebrochen-rationale Funktion \(h \colon x \mapsto 1{,}5x - 4{,}5 + \frac{1}{x}\) mit \(x \in \mathbb R \backslash \{0\}\) stellt in einem gewissen Bereich eine gute Näherung für \(f\) dar.

Geben Sie die Gleichungen der beiden Asymptoten des Graphen von \(h\) an.

(2 BE)

Lösung - Aufgabe 1

Geben Sie eine gebrochenrationale Funktion \(f\) an, deren Graph die Asymptote mit der Gleichung \(y = 2x - 1\) sowie die Nullstelle \(x = 2\) besitzt.

Teilaufgabe 1b

Zeigen Sie, dass \(f(x)\) zum Term \(x + 7 + \dfrac{16}{x - 1}\) äquivalent ist, und geben Sie die Bedeutung der Geraden \(g\) mit der Gleichung \(y = x + 7\) für \(G_{f}\) an.

(3 BE)

Lösung - Aufgabe 5

Gegeben ist die Funktion \(f \colon x \mapsto 3x + 2 + \dfrac{1}{x^{2}}\). Der Graph der Funktion \(f\) wird mit \(G_{f}\) bezeichnet.

a) Untersuchen Sie das Symmetrieverhalten von \(G_{f}\) bzgl. des Koordinatensystems.

b) Geben Sie die Art und die Gleichungen aller Asymptoten der Funktion \(f\) an.

c) Geben Sie eine Stammfunktion der Funktion \(f\) an.

Teilaufgabe 4b

Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

(3 BE)

Teilaufgabe 5b

Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von \(f\) im gesamten dargestellten Bereich. 

(3 BE)

Teilaufgabe 4

Einer der folgenden Terme nähert den Term der in \(\mathbb R \, \backslash \{0\}\) definierten Funktion \(u \,\colon x \mapsto \frac{1}{x} + x + 1\) für große Werte von \(x\) am besten. Geben Sie diesen Term an und machen Sie Ihre Antwort plausibel.

\(\textsf{I} \enspace \dfrac{1}{x} \qquad \qquad \\ \) \(\textsf{II} \enspace x \qquad \qquad \\ \) \(\textsf{III} \enspace x + 1 \qquad \qquad \\ \) \(\textsf{IV} \enspace \dfrac{1}{x} + 1 \qquad \qquad \\ \) \(\textsf{V} \enspace \dfrac{1}{x} + x\)

(3 BE) 

Teilaufgabe 1a

Gegeben ist die Funktion \(\displaystyle f \colon x \mapsto \frac{1}{2}x - \frac{1}{2} + \frac{8}{x + 1}\) mit Definitionsbereich \(\mathbb R \backslash \{-1\} \).

Abbildung 2 zeigt den Graphen \(G_f\) von \(f\).

Abbildung 2Abb. 2

Geben Sie die Gleichungen der Asymptoten von \(G_f\) an und zeigen Sie rechnerisch, dass \(G_f\) seine schräge Asymptote nicht schneidet. Zeichnen Sie die Asymptoten in Abbildung 2 ein.

(6 BE)