Anzeige nach Tag: zweite Ableitung

Teilaufgabe 3

Der Graph einer in \(\mathbb R\) definierten Funktion \(g \, \colon \mapsto g(x)\) besitzt für \(-5 \leq x \leq 5\) zwei Wendepunkte. Entscheiden Sie, welcher der Graphen I, II und III zur zweiten Ableitungsfunktion \(g''\) von \(g\) gehört. Begründen Sie Ihre Entscheidung.

Graph I zu Teilaufgabe 3
Graph II zu Teilaufgabe 3
Graph III zu Teilaufgabe 3

(2 BE)

Teilaufgabe g

Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.

(5 BE)

Teilaufgabe e

Zeigen Sie, dass dieser Abstand mit der minimalen Entfernung des Hubschraubers vom Mittelpunkt des Grundstücks übereinstimmt, der im Modell durch den Punkt \(M(-40|30|30)\) dargestellt wird.

(5 BE)

Teilaufgabe 1f

Das Radar in \(Z\) erfasst alle Objekte im Luftraum bis zu einer Entfernung von 50 km. Berechnen Sie die Länge der Flugstrecke von \(F_2\) im Überwachungsbereich des Radars.

(6 BE)

Teilaufgabe 1a

Gegeben ist die in \(\mathbb R\) definierte Funktion \(f : x \mapsto 6 \cdot e^{-0{,}5x} + x\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

 

Untersuchen Sie das Monotonie- und das Krümmungsverhalten von \(G_f\). Bestimmen Sie Lage und Art des Extrempunkts \(E(x_E|y_E)\) von \(G_f\).

(zur Kontrolle: \(x_E = 2 \cdot \ln 3; \enspace f''(x) = 1{,}5 \cdot e^{-0{,}5x}\))

(10 BE)