Analysis 1

  • Betrachtet wird das von den Graphen \(G_{g}\) und \(G_{h}\) eingeschlossene Flächenstück. Schraffieren Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term \(\displaystyle 2 \cdot \int_{0}^{2{,}5} (x - g(x))dx\) berechnet werden kann.

    (2 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{0\}\) definierte Funktion \(g \colon x \mapsto \dfrac{1}{x^2} - 1\).

    Geben Sie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) sowie die Wertemenge von \(g\) an.

    (2 BE) 

  • Begründen Sie: Wenn \(a = 0\) und \(b \neq 0\) gilt, dann ist der Graph von \(f_{a,b,c}\) symmetrisch bezüglich der \(y\)-Achse und schneidet die \(x\)-Achse nicht. 

    (2 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

    (4 BE)

  • Bestimmen Sie rechnerisch eine Gleichung der Tangente \(t\) an \(G_{f}\) im Punkt \((3|f(3))\). Berechnen Sie die Größe des Winkels, unter dem \(t\) die \(x\)-Achse schneidet, und zeichnen Sie \(t\) in die Abbildung 1 ein.

    (4 BE)

  • Nun wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x}f(t)dt\) betrachtet; ihr Graph wird mit \(G_{F}\) bezeichnet.

    Begründen Sie, dass \(F\) in \(x = 0\) eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von \(\mathbf{G_{f}}\) plausibel, dass im Intervall \([1;3]\) eine weitere Nullstelle von \(F\) liegt.
    Geben Sie an, welche besondere Eigenschaft \(G_{F}\) im Punkt \((-1|F(-1))\) hat, und begründen Sie Ihre Angabe.

    (5 BE)

  • Die Gerade mit der Gleichung \(y = x - 1\) begrenzt gemeinsam mit den Koordinatenachsen ein Dreieck. Geben Sie den Flächeninhalt dieses Dreiecks und den sich daraus ergebenden Näherungswert für \(F(1)\) an.

    (2 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) sowie den Graphen \(G_{g}\) der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto -cos(\frac{\pi}{2}x)\).
    Beschreiben Sie, wie \(G_{g}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(x \mapsto \cos{x}\) hervorgeht, und berechnen Sie durch Integration von \(g\) einen weiteren Näherungswert für \(F(1)\).

    Abbildung 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(F(1) \approx -\frac{2}{\pi}\))

    (5 BE)

  • Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von \(F\) für \(0 \leq x \leq 3\) unter Berücksichtigung der bisherigen Ergebnisse in Abbildung 1

    (4 BE)

  • Es wird nun ein bestimmtes Bohrloch im Wasserspeicher betrachtet. Durch das Abfließen verringert sich das Volumen des Wassers im Speicher in Abhängigkeit von der Zeit. Die Funktion \(g \colon t \mapsto 0{,}25t - 25\) mit \(0 \leq t \leq 100\) beschreibt modellhaft die zeitliche Entwicklung dieser Volumenänderung. Dabei ist \(t\) die seit der Fertigstellung des Bohrlochs vergangene Zeit in Sekunden und \(g(t)\) die momentane Änderungsrate des Wasservolumens im Speicher in Litern pro Sekunde.

    Berechnen Sie das Volumen des Wassers in Litern, das innerhalb der ersten Minute nach Fertigstellung des Bohrlochs aus dem Behälter abfließt.

    (4 BE)

  • Betrachtet wird die Schar der Funktionen \(f_{a,b,c} \,\colon x \mapsto \dfrac{ax + b}{x^{2} + c}\) mit \(a, b, c \in \mathbb R\) und maximaler Definitionsmenge \(D_{a,b,c}\).

    Die Funktion \(f\) aus Aufgabe 1 ist eine Funktion dieser Schar. Geben Sie die zugehörigen Werte von \(a\), \(b\) und \(c\) an.

    (1 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = e^{2x + 1}\). Zeigen Sie, dass \(f\) umkehrbar ist, und ermitteln Sie einen Term der Umkehrfunktion von \(f\).

    (4 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto (x^{2} - 9x) \cdot \sqrt{2 - x}\) mit maximaler Definitionsmenge \(D_{g}\). Geben Sie \(D_{g}\) und alle Nullstellen von \(g\) an.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

    (3 BE)

  • Betrachtet wird die in \(\mathbb R^{+}\) definierte Funktion \(f\) mit \(f(x) = \dfrac{1}{\sqrt{x^{3}}}\).

    Zeigen Sie, dass die in \(\mathbb R^{+}\) definierte Funktion \(F\) mit \(F(x) = -\dfrac{2}{\sqrt{x}}\) eine Stammfunktion von \(f\) ist.

    (2 BE)

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = \frac{1}{8}x^{3}\) sowie die Punkte \(Q_{a}(a|f(a))\) für \(a \in \mathbb R\). Die Abbildung zeigt den Graphen von \(f\) sowie die Punkte \(P(0|2)\) und \(Q_{2}\).

    Abbildung Aufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Berechnen Sie für \(a \neq 0\) die Steigung \(m_{a}\) der Gerade durch die Punkte \(P\) und \(Q_{a}\) in Abhängigkeit von \(a\).

    (zur Kontrolle: \(m_{a} = \dfrac{a^{3} - 16}{8a}\))

    (2 BE)

  • Berechnen Sie die Höhen, in denen das Loch gebohrt werden kann, damit die Spritzweite 6 m beträgt. Geben Sie zudem die Höhe an, in der das Loch gebohrt werden muss, damit die Spritzweite maximal ist.

    (5 BE)

  • Berechnen Sie den Inhalt der Fläche, die von \(G_{f}\) und der Strecke \([AB]\) eingeschlossen wird.

    (5 BE)

  • Bestimmen Sie das jeweilige Monotonieverhalten von \(f\) in den drei Teilintervallen \(]-\infty;-2[\), \(]-2;2[\) und \(]2;+\infty[\) der Definitionsmenge. Berechnen Sie zudem die Steigung der Tangente an \(G_{f}\) im Punkt \((0|f(0))\).

    (zur Kontrolle: \(f'(x) = -\dfrac{6 \cdot (x^{2} + 4)}{(x^{2} - 4)^{2}}\))

    (5 BE)