Analysis 1

  • Gemäß der Kettenregel gilt \(g'(x) = f'\left( f(x) \right) \cdot f'(x)\). Ermitteln Sie damit und mithilfe von Abbildung 2 alle Stellen, an denen der Graph von \(g\) eine waagrechte Tangente besitzt.

    (3 BE)

  • Gegeben ist die Funktion \(\displaystyle b\,\colon x \mapsto \frac{\ln x}{x - 2}\) mit maximalem Definitionsbereich \(D\).

    Geben Sie \(D\) an und bestimmen Sie die Gleichung der Tangente an den Graphen von \(b\) im Punkt \(\big(1|b(1)\big)\).

    (6 BE)

  • Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug dargestellt. Daher soll der obere Blattrand im Modell für \(-2 \leq x \leq 0\) nicht mehr durch \(G_h\), sondern durch den Graphen \(G_k\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(k\) dritten Grades beschrieben werden. Für die Funktion \(k\) werden die folgenden Bedingungen gewählt (\(k'\) und \(h'\) sind die Ableitungsfunktionen von \(k\) bzw. \(h\)):

    \[\begin{align*} \sf{I} & \quad k(0) = h(0) \\[0.8em] \sf{II} & \quad k'(0) = h'(0) \\[0.8em] \sf{III} & \quad k(-2) = h(-2) \\[0.8em] \sf{IV} & \quad k'(-2) = 1{,}5 \end{align*}\]

    Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I, II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird.

    (3 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Abbildung 2 zeigt den Graphen einer in \(\mathbb R\) definierten differenziebaren Funktion \(g \colon x \mapsto g(x)\). Mithilfe des Newton-Verfahrens soll ein Näherungswert für die Nullstelle \(a\) von \(g\) ermittelt werden. Begründen Sie, dass weder die \(x\)-Koordinate des Hochpunkts \(H\) noch die \(x\)-Koordinate des Tiefpunkts \(T\) als Startwert des Newton-Verfahrens gewählt werden kann.

    Abbildung 2 zu Teilaufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2015Abb. 2

     

    (2 BE)

  • Geben Sie für die Funktion \(h\) und deren Ableitungsfunktion \(h'\) jeweils das Verhalten für \(x \to 0\) an und zeichnen Sie \(G_{h}\) im Bereich \(0 < x < 0{,}75\) in Abbildung 1 ein.

    (3 BE)

  • Eine auf einem Hausdach installierte Photovoltaikanlage wandelt Lichtenergie in elektrische Energie um. Für \(4 \leq x \leq 20\) beschreibt die Funktion \(p\) modellhaft die zeitliche Entwicklung der Leistung der Anlage an einem bestimmten Tag. Dabei ist \(x\) die seit Mitternacht vergangene Zeit in Stunden und \(p(x)\) die Leistung in kW (Kilowatt).

    Bestimmen Sie rechnerisch die Uhrzeit am Nachmittag auf Minuten genau, ab der die Leistung der Anlage weniger als 40 % ihres Tageshöchstwerts von 10 kW beträgt.

    (4 BE)

  • Berechnen Sie die Nullstelle von \(f\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = e^{2x + 1}\). Zeigen Sie, dass \(f\) umkehrbar ist, und ermitteln Sie einen Term der Umkehrfunktion von \(f\).

    (4 BE)

  • Betrachtet wird für jeden Wert \(c \in \mathbb R^+\) das Rechteck mit den Eckpunkten \(P(-c|0)\), \(Q(c|0)\), \(R(c|f(c))\) und \(S\).

    Zeichnen Sie für \(c = 2\) das Rechteck \(PQRS\) in Abbildung 1 ein.

    (1 BE) 

  • Bestimmen Sie die Nullstellen von \(f\).

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \left(x^3 - 8 \right) \cdot (2 + \ln x)\) mit maximalem Definitionsbereich D.

    Geben Sie D an.

    (1 BE)

  • Um einen Näherungswert für die Länge der oberen Profillinie der Vorderseite der Dachgaube berechnen zu können, wird \(G_f\) im Bereich \(-4 \leq x \leq 4\) durch vier Kreisbögen angenähert, die nahtlos ineinander übergehen und zueinander kongruent sind. Einer dieser Kreisbögen erstreckt sich im Bereich \(0 \leq x \leq 2\) und ist Teil des Kreises mit Mittelpunkt \(M(0|-1)\) und Radius 3. Berechnen Sie den Mittelpunktswinkel des zu diesem Kreisbogen gehörenden Kreissektors und ermitteln Sie damit den gesuchten Näherungswert.

    (5 BE) 

  • Die Funktion \(h^{*}\colon x \mapsto h(x)\) mit Definitionsmenge \([1;+\infty[\) unterscheidet sich von der Funktion \(h\) nur hinsichtlich der Definitionsmenge. Im Gegensatz zu \(h\) ist die Funktion \(h^{*}\) umkehrbar.

    Geben Sie die Definitionsmenge und die Wertemenge der Umkehrfunktion \(h^{*}\) an. Berechnen Sie die Koordinaten des Schnittpunkts \(S\) des Graphen von \(h^{*}\) und der Geraden mit der Gleichung \(y = x\).

    (Teilergebnis: \(x\)-Koordinate des Schnittpunkts: \(e^{\frac{4}{3}}\))

    (4 BE)

  • Zeigen Sie, dass \(G_{f}\) genau einen Wendepunkt \(W\) besitzt, und bestimmen Sie dessen Koordinaten sowie die Gleichung der Tangente an \(G_{f}\) im Punkt \(W\).

    (zur Kontrolle: \(x\)-Koordinate von \(W\): \(e\))

    (6 BE)

  • Die Funktion \(p\) besitzt im Intervall \([4;12]\) eine Wendestelle. Geben Sie die Bedeutung dieser Wendestelle im Sachzusammenhang an.

    (2 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto (x^{2} - 9x) \cdot \sqrt{2 - x}\) mit maximaler Definitionsmenge \(D_{g}\). Geben Sie \(D_{g}\) und alle Nullstellen von \(g\) an.

    (3 BE)

  • Berechnen Sie denjenigen Wert von \(c\), für den \(\overline{QR} = 1\) gilt.

    (3 BE) 

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Zeichnen Sie die Parabel \(G_h\) - unter Berücksichtigung des Scheitels - im Bereich \(-2 \leq x \leq 4\) in Ihre Zeichnung aus Aufgabe 1d ein. Spiegelt man diesen Teil von \(G_h\) an der Winkelhalbierenden \(w\), so entsteht eine herzförmige Figur; ergänzen Sie Ihre Zeichnung dementsprechend.

    (4 BE)