Schnittpunkt mit der y-Achse

  • Gegeben ist die Funktion \(f\,\colon x \mapsto 2 - \sqrt{12-2x}\) mit maximaler Definitionsmenge \(D_f = \; ]-\infty;6]\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    Berechnen Sie die Koordinaten der Schnittpunkte von \(G_f\) mit den Koordinatenachsen. Bestimmen Sie das Verhalten von \(f\) für \(x \to -\infty\) und geben Sie \(f(6)\) an.

    (5 BE)

  • Geben Sie den Zusammenhang zwischen der Funktion \(F\) und dem Ergebnis der Aufgabe 1e an.

    (1 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \displaystyle \frac{2e^x}{e^x + 9}\) mit Definitionsbereich \(\mathbb R\). Abbildung 2 zeigt den Graphen \(G_f\) von \(f\,\).

    Abbildung 2: Graph von fAbb. 2

    Zeigen Sie rechnerisch, dass \(G_f\) genau einen Achsenschnittpunkt \(S\) besitzt, und geben Sie die Koordinaten von \(S\) an.

    (2 BE)

  • Gegeben ist die Schar der Funktionen \(f_a : x \mapsto 6 \cdot e^{-0{,}5x} - a \cdot x\) mit \(a \in \mathbb R^+\) und Definitionsmenge \(\mathbb R\).

     

    Weisen Sie nach, dass die Graphen aller Funktionen der Schar die \(y\)-Achse im selben Punkt schneiden und in \(\mathbb R\) streng monoton fallend sind. Zeigen Sie, dass \(\lim \limits_{x \, \to \, +\infty} f_a(x) = -\infty\) gilt.

    (5 BE)

  • Geben Sie für die Funktion \(f\) mit \(f(x) = \ln (2013 - x)\) den maximalen Definitionsbereich \(D\), das Verhalten von \(f\) an den Grenzen von \(D\) sowie die Schnittpunkte des Graphen von \(f\) mit den Koordinatenachsen an.

    (5 BE)

Seite 2 von 2