Mathematik Abitur Bayern 2020

  • Gegeben ist die Funktion \(g \colon x \mapsto \ln{(2 - x^{2})}\) mit maximaler Definitionsmenge \(D_{g}\).

    Skizzieren Sie die Parabel mit der Gleichung \(y = 2 - x^{2}\) in einem Koordinatensystem und geben Sie \(D_{g}\) an.

    (3 BE)

  • Ermitteln Sie den Term der Ableitungsfunktion \(g'\) von \(g\).

    (2 BE)

  • Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

    (3 BE)

  • Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von \(G_{h}\) einen Näherungswert für \(\displaystyle \int_{10}^{20} h(x)dx\).

    (2 BE)

  • Berechnen Sie die \(x\)-Koordinate des Schnittpunkts von \(G_{k}\) mit der waagrechten Asymptote.

    (2 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) einer in \([0{,}8; +\infty[\) definierten Funktion f.

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Betrachtet wird zudem die in \([0{,}8; +\infty[\) definierte Integralfunktion \(\displaystyle J \colon x \mapsto \int_{2}^{x} f(t) dt\).

    Begründen Sie mithilfe von Abbildung 2, dass \(J(1) \approx -1\) gilt, und geben Sie einen Näherungswert für den Funktionswert \(J(4{,}5)\) an. Skizzieren Sie den Graphen von \(J\) in der Abbildung 2.

    (5 BE)

  • Gegeben ist die Funktion \(h \colon x \mapsto x \cdot \ln{(x^{2})}\) mit maximalem Definitionsbereich \(D_{h}\).

    Geben Sie \(D_{h}\) an und zeigen Sie, dass für den Term der Ableitungsfunktion \(h'\) gilt: \(h'(x) = \ln{(x^{2})} + 2\).

    (2 BE)

  • Ein grüner Würfel und ein roter Würfel werden gleichzeitig geworfen. Die Zufallsgröße \(X\) beschreibt die Summe der beiden geworfenen Augenzahlen. Geben Sie alle Werte an, die die Zufallsgröße \(X\) annehmen kann, und bestimmen Sie die Wahrscheinlichkeit \(P(X = 7)\).

    (3 BE)

  • Ein Glücksrad besteht aus zwei unterschiedlich großen Sektoren. Der größere Sektor ist mit der Zahl 1 und der kleinere mit der Zahl 3 beschriftet. Die Wahrscheinlichkeit dafür, beim einmaligen Drehen des Glücksrads die Zahl 1 zu erzielen, wird mit \(p\) bezeichnet. Das Glücksrad wird zweimal gedreht.

    Begründen Sie, dass die Wahrscheinlichkeit dafür, dass die Summe der beiden erzielten Zahlen 4 ist, durch den Term \(2p \cdot (1- p)\) angegeben wird.

    (1 BE)

  • Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

    (4 BE)

  • Die Strecke \([PQ]\) mit den Eigenschaften \(P(8|-5|1)\) und \(Q\) ist Durchmesser einer Kugel mit Mittelpunkt \(M(5|-1|1)\).

    Berechnen Sie die Koordinaten von \(Q\) und weisen Sie nach, dass der Punkt \(R(9|-1|4)\) auf der Kugel liegt.

    (3 BE)

  • Begründen Sie ohne weitere Rechnung, dass das Dreieck \(PQR\) bei \(R\) rechtwinklig ist.

    (2 BE)

  • Gegeben sind die Punkte \(P(-2|3|0)\), \(R(2|-1|2)\) und \(Q(q|1|5)\) mit der reellen Zahl \(q\), wobei \(Q\) von \(P\) genauso weit entfernt ist wie von \(R\).

    Bestimmen Sie \(q\).

    (zur Kontrolle: \(q = -2\))

    (3 BE)

  • Ermitteln Sie die Koordinaten des Eckpunkts \(S\) der Raute \(PQRS\). Zeigen Sie, dass \(PQRS\) kein Quadrat ist.

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f \colon x \mapsto \dfrac{x^{2} - 1}{x^{2} + 1}\); die Abbildung 1 zeigt ihren Graphen \(G_{f}\).

    Abbildung 1 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    Bestätigen Sie rechnerisch, dass \(G_{f}\) symmetrisch bezüglich der \(y\)-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von \(f\) für \(x \to +\infty\). Bestimmen Sie diejenigen \(x\)-Werte, für die \(f(x) = 0{,}96\) gilt.

    (5 BE)

  • Untersuchen Sie rechnerisch das Monotonieverhalten von \(G_{f}\).

    (zur Kontrolle: \(f'(x) = \dfrac{4x}{(x^{2} + 1)^{2}}\))

    (4 BE)

  • Bestimmen Sie rechnerisch eine Gleichung der Tangente \(t\) an \(G_{f}\) im Punkt \((3|f(3))\). Berechnen Sie die Größe des Winkels, unter dem \(t\) die \(x\)-Achse schneidet, und zeichnen Sie \(t\) in die Abbildung 1 ein.

    (4 BE)

  • Nun wird die in \(\mathbb R\) definierte Integralfunktion \(\displaystyle F \colon x \mapsto \int_{0}^{x}f(t)dt\) betrachtet; ihr Graph wird mit \(G_{F}\) bezeichnet.

    Begründen Sie, dass \(F\) in \(x = 0\) eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von \(\mathbf{G_{f}}\) plausibel, dass im Intervall \([1;3]\) eine weitere Nullstelle von \(F\) liegt.
    Geben Sie an, welche besondere Eigenschaft \(G_{F}\) im Punkt \((-1|F(-1))\) hat, und begründen Sie Ihre Angabe.

    (5 BE)

  • Die Gerade mit der Gleichung \(y = x - 1\) begrenzt gemeinsam mit den Koordinatenachsen ein Dreieck. Geben Sie den Flächeninhalt dieses Dreiecks und den sich daraus ergebenden Näherungswert für \(F(1)\) an.

    (2 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) sowie den Graphen \(G_{g}\) der in \(\mathbb R\) definierten Funktion \(g \colon x \mapsto -cos(\frac{\pi}{2}x)\).
    Beschreiben Sie, wie \(G_{g}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(x \mapsto \cos{x}\) hervorgeht, und berechnen Sie durch Integration von \(g\) einen weiteren Näherungswert für \(F(1)\).

    Abbildung 2 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2020

    (zur Kontrolle: \(F(1) \approx -\frac{2}{\pi}\))

    (5 BE)

Seite 3 von 4