Mathematik Abitur Bayern 2021

  • Betrachtet werden eine in \(\mathbb R\) definierte ganzrationale Funktion \(p\) und der Punkt \(Q(2|p(2))\).

    Beschreiben Sie, wie man rechnerisch die Gleichung der Tangente an den Graphen von \(p\) im Punkt \(Q\) ermitteln kann.

    (2 BE)

  • Gegeben ist eine in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto ax^{2} + c\) mit \(a, c \in \mathbb R\), deren Graph im Punkt \(N(1|0)\) die Tangente mit der Gleichung \(y = -x + 1\) besitzt. Bestimmen Sie \(a\) und \(c\).

    (3 BE)

  • Die Abbildung zeigt den Graphen \(G_{f}\) einer in \(\mathbb R\) definierten Funktion \(f\). \(G_{f}\) ist streng monoton fallend und schneidet die \(x\)-Achse im Punkt \((1|0)\).

    Betrachtet wird ferner die Funktion \(g\) mit \(g(x) = \dfrac{1}{f(x)}\) und maximalem Definitionsbereich \(D_{g}\).

    Abbildung Aufgabe 4 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2021

    Begründen Sie, dass \(x = 1\) nicht in \(D_{g}\) enthalten ist, und geben Sie den Funktionswert \(g(-2)\) an.

    (2 BE)

  • Ermitteln Sie mithilfe der Abbildung die \(x\)-Koordinaten der Schnittpunkte der Graphen von \(f\) und \(g\).

    (3 BE)

  • Berechnen Sie den Wert des Integrals \(\displaystyle \int_{2}^{3} f(x)dx\).

    (3 BE)

  • Das Dreieck \(ABF\) liegt in der Ebene \(W\). Ermitteln Sie eine Gleichung von \(W\) in Koordinatenform und beschreiben Sie die besondere Lage von \(W\) im Koordinatensystem.

    (zur Kontrolle: \(W \colon 4x_{2} + 3x_{3} - 20 = 0\))

    (4 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = e^{2x + 1}\). Zeigen Sie, dass \(f\) umkehrbar ist, und ermitteln Sie einen Term der Umkehrfunktion von \(f\).

    (4 BE)

  • Gegeben ist die Zufallsgröße \(X\) mit der Wertemenge \(\{0;1;2;3;4;5\}\). Die Wahrscheinlichkeitsverteilung von \(X\) ist symmetrisch, d. h. es gilt \(P(X = 0) = P(X = 5)\), \(P(X = 1) = P(X = 4)\), \(P(X = 2) = P(X = 3)\).

    Die Tabelle zeigt die Wahrscheinlichkeitswerte \(P(X \leq k)\) für \(k \in \{0; 1; 2\}\).

    Tabelle Aufgabe a,b Stochastik 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Tragen Sie die fehlenden Werte in die Tabelle ein.

    (2 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

    Bestimmen Sie die Koordinaten von \(B\).

    (zur Kontrolle: \(B(-2|3|2)\))

    (4 BE)

  • Berechnen Sie den Abstand von \(g\) und \(h\).

    (1 BE)

  • Mit einem Lasermessgerät soll ein Verkehrsschild angepeilt werden. Diese Situation wird modellhaft in einem Koordinatensystem dargestellt. Der Ausgangspunkt des Laserstrahls wird durch den Punkt \(P(104|-42|10)\) beschrieben, seine Richtung durch den Vektor \(\begin{pmatrix} -13 \\ 5 \\ 1 \end{pmatrix}\). Das Verkehrsschild wird durch eine Kreisscheibe repräsentiert, die in der \(x_{2}x_{3}\)-Ebene liegt und den Mittelpunkt \(M(0|0|20)\) sowie den Radius 3 hat.

    Untersuchen Sie, ob der Laserstrahl auf das Verkehrsschild trifft.

    (5 BE)

  • Gegeben ist die in \(\mathbb R \backslash \{-2;2\}\) definierte Funktion \(f \colon x \mapsto \dfrac{6x}{x^{2} - 4}\). Der Graph von \(f\) wird mit \(G_{f}\) bezeichnet und ist symmetrisch bezüglich des Koordinatenursprungs.

    Geben Sie die Gleichungen aller senkrechter Asymptoten von \(G_{f}\) an. Begründen Sie, dass \(G_{f}\) die \(x\)-Achse als waagrechte Asymptote besitzt.

    (3 BE)

  • Abbildung 1 Geometrie 2 Prüfungsteil B Mathematik Abitur Bayern 2021Abb. 1

    Der in Abbildung 1 dargestellte Körper wird begrenzt von der quadratischen Grundfläche \(ABCD\) mit \(A(5|5|0)\), \(B(-5|5|0)\), \(C(-5|-5|0)\) und \(D(5|-5|0)\), acht dreieckigen Seitenflächen und einem weiteren Quadrat \(EFGH\) mit \(E(2|0|4)\), \(F(0|2|4)\), \(G(-2|0|4)\) und \(H(0|-2|4)\). Der Mittelpunkt \(S\) des Quadrats \(ABCD\) ist der Ursprung des Koordinatensystems und der gesamte Körper ist symmetrisch sowohl bezüglich der \(x_{1}x_{3}\)-Ebene als auch bezüglich der \(x_{2}x_{3}\)-Ebene.

    Zeigen Sie, dass das Dreieck \(ABF\) bei \(F\) rechtwinklig ist.

    (2 BE)

  • Die Punkte \(A(3|3{,}6)\) und \(B(8|0{,}8)\) liegen auf \(G_{f}\); zwischen diesen beiden Punkten verläuft \(G_{f}\) unterhalb der Strecke \([AB]\).

    Skizzieren Sie \(G_{f}\) im Bereich \(-10 \leq x \leq 10\) unter Verwendung der bisherigen Informationen in einem Koordinatensystem.

    (4 BE)

  • Berechnen Sie den Inhalt der Fläche, die von \(G_{f}\) und der Strecke \([AB]\) eingeschlossen wird.

    (5 BE)

  • Betrachtet wird die Schar der Funktionen \(f_{a,b,c} \,\colon x \mapsto \dfrac{ax + b}{x^{2} + c}\) mit \(a, b, c \in \mathbb R\) und maximaler Definitionsmenge \(D_{a,b,c}\).

    Die Funktion \(f\) aus Aufgabe 1 ist eine Funktion dieser Schar. Geben Sie die zugehörigen Werte von \(a\), \(b\) und \(c\) an.

    (1 BE)

  • Geben Sie für \(a\), \(b\) und \(c\) alle Werte an, sodass sowohl \(D_{a,b,c}  = \mathbb R\) gilt als auch, dass der Graph von \(f_{a,b,c}\) symmetrisch bezüglich des Koordinatenursprungs, aber nicht identisch mit der \(x\)-Achse ist.

    (3 BE)

  • Für die erste Ableitung von \(f_{a,b,c}\) gilt: \(f'_{a,b,c}(x) = -\dfrac{ax^{2} + 2bx - ac}{(x^{2} +c)^{2}}\).

    Zeigen Sie: Wenn \(a \neq 0\) und \(c > 0\) gilt, dann besitzt der Graph von \(f_{a,b,c}\) genau zwei Extrempunkte.

    (4 BE)

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(p \colon x \mapsto \dfrac{40}{(x - 12)^{2} + 4}\); die Abbildung zeigt den Graphen \(G_{p}\) von \(p\).

    Abbildung Aufgabe 3 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Beschreiben Sie, wie \(G_{p}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(h \colon x \mapsto \dfrac{5}{x^{2} + 4}\) schrittweise hervorgeht, und begründen Sie damit, dass \(G_{p}\) bezüglich der Geraden mit der Gleichung \(x = 12\) symmetrisch ist.

    (4 BE)

Seite 3 von 4