Bernoullikette

  • Gegeben ist eine Bernoullikette mit der Länge \(n\) und der Trefferwahrscheinlichkeit \(p\). Erklären Sie, dass für alle \(k \in \{0; 1; 2; \dots; n\}\) die Beziehung \(B(n; p; k) = B(n; 1 - p; n - k)\) gilt. 

    (2 BE)

  • Im Dezember 2021 wurden in Norwegen rund 14 000 Pkw neu zugelassen. In einer vereinfachten Übersicht sind die Anteile der verschiedenen Antriebsarten an diesen Neuzulassungen dargestellt.

    Tabelle Aufgabe 1 Stochastik 1 Prüfungsteil B Mathematik Abitur Bayern 2023

    Für eine Untersuchung werden aus diesen Neuzulassungen 200 Fahrzeuge zufällig ausgewählt und deren Besitzer nach den Gründen für die Wahl der Antriebsart befragt. Da aus einer großen Anzahl von Fahrzeugen nur verhältnismäßig wenige ausgewählt werden, wird das Urnenmodell „Ziehen mit Zurücklegen" verwendet.

    Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

    \(D\): „Unter den ausgewählten Pkw befinden sich sieben oder acht Verbrenner mit Dieselmotor."

    \(E\): „Unter den ausgewählten Pkw befinden sich mehr als 135 mit rein elektrischem Antrieb."

    (4 BE) 

  • In einen leeren Behälter werden drei Kugeln gelegt. Dabei wird die Farbe jeder Kugel durch Werfen eines Würfels festgelegt, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind: Wird die „1" oder die „2" erzielt, wird eine gelbe Kugel gewählt, sonst eine schwarze.

    Weisen Sie rechnerisch nach, dass die Wahrscheinlichkeit dafür, dass sich nun mindestens zwei schwarze Kugeln im Behälter befinden, \(\large{\frac{20}{27}}\) beträgt.

    (2 BE) 

  • Die vier Seiten eines regelmäßigen Tetraeders sind mit den Zahlen 1, 2, 3 und 4 durchnummeriert. Das Tetraeder wird fünfmal geworfen.

    Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term \(\left( \dfrac{3}{4} \right)^5\) berechnet werden kann, und begründen Sie Ihre Angabe. 

    (2 BE) 

  • Um sicherzustellen, dass jeweils genau 50 Gummibärchen in eine Tüte gelangen, fallen diese einzeln nacheinander aus einer Öffnung des Behälters in den Verpackungsautomaten. Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem folgenden Term berechnet werden kann:

    \[\sum \limits_{k\,=\,0}^{3}(0{,}75^{k} \cdot 0{,}25)\]

    (2 BE)

  • Vor dem Verpacken werden die verschiedenfarbigen Gummibärchen in großen Behältern gemischt, wobei der Anteil der roten Gummibärchen 25 % beträgt. Ein Verpackungsautomat füllt jeweils 50 Gummibärchen aus einem der großen Behälter in eine Tüte.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass in einer zufällig ausgewählten Tüte mehr als ein Drittel der Gummibärchen rot ist.

    (3 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass die fünfte Familie die erste ist, die einen Bollerwagen ausleiht.

    (2 BE)

  • Die Sektoren des abgebildeten Glücksrads sind gleich groß und mit den Zahlen von 0 bis 9 durchnummeriert.

    Das Glücksrad wird zwanzigmal gedreht. Bestimmen Sie die Wahrscheinlichkeit der Ereignisse \(A\) und \(B\).

    \(A\): „Es wird genau siebenmal eine ungerade Zahl erzielt."

    \(B\): „Es wird mehr als siebenmal und höchstens zwölfmal eine ungerade Zahl erzielt."

    Glücksrad Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2023

    (3 BE) 

  • Mit dem Glücksrad wird ein Spiel durchgeführt. Jeder Spieler darf das Glücksrad beliebig oft drehen. Beendet er das Spiel selbst, bevor er eine „0" erzielt, so wird ihm die Summe der erzielten Zahlen in Euro ausgezahlt. Erzielt er eine „0", so ist das Spiel dadurch beendet und es erfolgt keine Auszahlung.

    Ein erster Spieler entscheidet sich vor dem Spiel dafür, das Glücksrad, sofern er keine „0" erzielt, viermal zu drehen und danach das Spiel zu beenden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er eine Auszahlung erhält.

    (2 BE) 

  • Die Zufallsgröße \(Z\), die für eine Laplace-Münze die Anzahl des Auftretens von „Zahl" bei viermaligem Werfen beschreibt, hat ebenfalls den Erwartungswert 2 und es gilt analog \(P(Z = 2) = \frac{3}{8}\). Berechnen Sie die Varianz von \(Z\), vergleichen Sie diese mit der Varianz von \(Y\) und beschreiben Sie davon ausgehend einen qualitativen Unterschied der Wahrscheinlichkeitsverteilung von \(Z\) und \(Y\).

    (2 BE)

  • Ein Telekommunikationsunternehmen möchte neue Kunden gewinnen. Dazu schickt es an zufällig ausgewählte Haushalte Werbematerial. Im Folgenden soll davon ausgegangen werden, dass die angeschriebenen Haushalte unabhängig voneinander mit einer Wahrscheinlichkeit von jeweils 20 % noch nicht über einen schnellen Internetanschluss verfügen.

    Ermitteln Sie jeweils die Wahrscheinlichkeit dafür, dass unter 10 angeschriebenen Haushalten

    ● mindestens zwei noch nicht über einen schnellen Internetanschluss verfügen.

    ● genau acht bereits über einen schnellen Internetanschluss verfügen.

    (4 BE)

  • Betrachtet wird eine Bernoullikette mit der Trefferwahrscheinlichkeit 0,9 und der Länge 20. Beschreiben Sie zu dieser Bernoullikette ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}9^{20} + 20 \cdot 0{,}1 \cdot 0{,}9^{19}\) angegeben wird.

    (2 BE)

  • Die Wahrscheinlichkeit dafür, dass beim einmaligen Drehen der gelbe Sektor getroffen wird, beträgt 50 %. Felix hat 100 Drehungen des Glücksrads beobachtet und festgestellt, dass bei diesen der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wurde, deutlich geringer als 50 % war. Er folgert: „Der Anteil der Drehungen, bei denen der gelbe Sektor getroffen wird, muss also bei den nächsten 100 Drehungen deutlich größer als 50 % sein." Beurteilen Sie die Aussage von Felix.

    (2 BE)

  • Nach einer aktuellen Erhebung leiden 25 % der Einwohner Deutschlands an einer Allergie. Aus den Einwohnern Deutschlands werden \(n\) Personen zufällig ausgewählt.

    Bestimmen Sie, wie groß \(n\) mindestens sein muss, damit mit einer Wahrscheinlichkeit von mehr als 99 % mindestens eine der ausgewählten Personen an einer Allergie leidet.

    (4 BE)

  • Es werden mehrere Flaschen geöffnet und für jede dieser Flaschen wird festgestellt, ob das Ereignis \(A\) eintritt. Begründen Sie, dass dieses Zufallsexperiment näherungsweise durch eine Bernoullikette beschrieben werden kann.

    (2 BE)

  • Zwei Drittel der Senioren in Deutschland besitzen ein Mobiltelefon. Bei einer Talkshow zum Thema „Chancen und Risiken der digitalen Welt" sitzen 30 Senioren im Publikum.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter 30 zufällig ausgewählten Senioren in Deutschland mindestens 17 und höchstens 23 ein Mobiltelefon besitzen.

    (3 BE)

  • Erläutern Sie anhand eines Beispiels, dass die modellhafte Beschreibung der Schießeinlage durch eine Bernoullikette unter Umständen der Realität nicht gerecht wird.

    (2 BE)

  • Bei der Wintersportart Biathlon wird bei jeder Schießanlage auf fünf Scheiben geschossen. Ein Biathlet tritt bei einem Einzelrennen zu einer Schießeinlage an, bei der er auf jede Scheibe einen Schuss abgibt. Diese Schießeinlage wird modellhaft durch eine Bernoullikette mit der Länge 5 und der Trefferwahrscheinlichkeit \(p\) beschrieben.

    Geben Sie für die folgenden Ereignisse \(A\) und \(B\) jeweils einen Term an, der die Wahrscheinlichkeit des Ereignisses in Abhängigkeit von \(p\) beschreibt.

    \(A\): „Der Biathlet trifft bei genau vier Schüssen."

    \(B\): „Der Biathlet trifft nur bei den ersten beiden Schüssen."

    (3 BE)

Seite 1 von 2