Verschiebung von Funktionsgraphen

  • Betrachtet wird die in \(\mathbb R\) definierte Funktion \(p \colon x \mapsto \dfrac{40}{(x - 12)^{2} + 4}\); die Abbildung zeigt den Graphen \(G_{p}\) von \(p\).

    Abbildung Aufgabe 3 Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2021

    Beschreiben Sie, wie \(G_{p}\) aus dem Graphen der in \(\mathbb R\) definierten Funktion \(h \colon x \mapsto \dfrac{5}{x^{2} + 4}\) schrittweise hervorgeht, und begründen Sie damit, dass \(G_{p}\) bezüglich der Geraden mit der Gleichung \(x = 12\) symmetrisch ist.

    (4 BE)

  • Der Graph der Funktion \(g^{*}\) geht aus \(G_{g}\) durch Strecken und Verschieben hervor. Die Wertemenge von \(g^{*}\) ist \(]-1;1[\). Geben Sie einen möglichen Funktionsterm für \(g^{*}\) an.

    (2 BE)

  • Abbildung 2 zeigt den Graphen der in \(\mathbb R\) definierten Funktion \(g\), dessen einzige Extrempunkte \((-1|1)\) und \((0|0)\) sind, sowie den Punkt \(P\).

    Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2023Abb. 2

    Geben Sie die Koordinaten des Tiefpunkts des Graphen der in \(\mathbb R\) definierten Funktion \(h(x) = -g(x - 3)\) an.

    (2 BE) 

  • Beschreiben Sie, wie \(G_{g}\) schrittweise aus dem Graphen der in \(\mathbb R^{+}_{0}\) definierten Funktion \(w \colon x \mapsto \sqrt{x}\) hervorgeht, und geben Sie die Wertemenge von \(g\) an.

    (4 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g_{a,c} \, \colon x \mapsto \sin (ax) + c\) mit \(a,c \in \mathbb R^+_0\).

    Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für \(a\) und einen möglichen Wert für \(c\) so an, dass die zugehörige Funktion \(g_{a,c}\) diese Eigenschaft besitzt.

    α) Die Funktion\(g_{a,c}\) hat die Wertemenge \([0;2]\).

    β) Die Funktion \(g_{a,c}\) hat im Intervall \([0;\pi]\) genau drei Nullstellen.

    (3 BE)

  • Die Funktion \(h\) hat den Wertebereich \([1;3]\).

    (1 BE)

  • Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit in Koordinatensystem aus Aufgabe 1d soll dabei 1 cm in Wirklichkeit entsprechen.

    Berechnen Sie den Inhalt des von \(G_h\) und der Winkelhalbierenden \(w\) eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells.

    Abbildung zu Teilaufgabe 3

     

    (5 BE)

  • Erläutern Sie, dass die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto 4 - e^x\) den Wertebereich \(]-\infty;4[\) besitzt.

    (2 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Geben Sie jeweils den Term einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Die Funktion \(g\) hat die maximale Definitionsmenge \(]-\infty;5[\). 

    (2 BE)

  • Die in \(\mathbb R \, \backslash \, \{-3;-1\}\) definierte Funktion \(\displaystyle k \colon x \mapsto 3 \cdot \left( \frac{1}{x + 1} - \frac{1}{x + 3} \right) - 0{,}2\) stellt im Bereich \(-0{,}5 \leq x \leq 2\) eine gute Näherung für die Funktion \(h\) dar.

    Beschreiben Sie, wie der Graph der Funktion \(k\) aus dem Graphen der Funktion \(f\) aus Aufgabe 1 hervorgeht.

    (2 BE)

  • Der Graph von \(f\) wird verschoben. Der Punkt \((2|0)\) des Graphen der Funktion \(f\) besitzt nach der Verschiebung die Koordinaten \((3|2)\). Der verschobene Graph gehört zu einer Funktion \(h\). Geben Sie eine Gleichung von \(h\) an.

    (2 BE)

  • Geben Sie jeweils den Term und den Definitionsbereich einer Funktion an, die die angegebene(n) Eigenschaft(en) besitzt.

    Der Punkt \((2|0)\) ist ein Wendepunkt des Graphen von \(g\).

    (2 BE)

  • Die Funktion \(g\) ist nicht konstant und es gilt \(\displaystyle \int_{0}^{2} g(x) dx = 0\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h : x \mapsto 6 \cdot e^{-0{,}5x} + 1{,}5\). Die Abbildung zeigt den in \(\mathbb R\) streng monoton fallenden Graphen \(G_h\) von \(h\) sowie dessen Asymptote, die durch die Gleichung \(y = 1{,}5\) gegeben ist.

    Beschreiben Sie, wie \(G_h\) aus dem Graphen der in \(\mathbb R\) definierten natürlichen Exponentialfunktion \(x \mapsto e^x\) hervorgeht.

    Abbildung Teilaufgabe 2a: Exponetialfunktion h, streng monoton fallend, Asymptote =1,5

    (4 BE)

  • Haben zu Beobachtungsbeginn Sonnenblumen der Sorte Tramonto die gleiche Höhe wie Sonnenblumen der Sorte Alba, so erreichen von da an die Sonnenblumen der Sorte Tramonto im Vergleich zu denen der Sorte Alba jede Höhe in der Hälfte der Zeit.

    Das Wachstum von Sonnenblumen der Sorte Tramonto lässt sich modellhaft mithilfe einer in \(\mathbb R\) definierten Funktion \(g\) beschreiben, die eine Funktionsgleichung der Form I, II, oder III mit \(k \in \mathbb R^+\) besitzt:

    \[\textsf{I}\enspace y = \frac{2e^{x+k}}{e^{x+k}+9}\]

    \[\textsf{II}\enspace y = k \cdot \frac{2e^x}{e^x + 9}\]

    \[\textsf{III}\enspace y = \frac{2e^{kx}}{e^{kx} + 9}\]

    Dabei ist \(x\) die seit Beobachtungsbeginn vergangene Zeit in Monaten und \(y\) ein Näherungswert für die Höhe einer Blume in Metern.

    Begründen Sie, dass weder eine Gleichung der Form I noch eine der Form II als Funktionsgleichung von \(g\) infrage kommt.

    (4 BE)

  • Betrachtet wird die in \(\mathbb R^+\) definierte Funktion \(h \colon x \mapsto -\ln x + 3\,\).

    Geben Sie an, wie der Graph von \(h\) schrittweise aus dem Graphen der in \(\mathbb R^{+}\) definierten Funktion \(x \mapsto \ln x\) hervorgeht

    (2 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \sqrt{x + 3}\) mit Definitionsmenge \(D_f\). Abbildung 1 zeigt den Graphen \(G_f\) von \(f\), einen beliebigen Punkt \(Q(x|f(x))\) auf \(G_f\) sowie den Punkt \(P(1{,}5|0)\) auf der \(x\)-Achse.

    Abbildung 1 Teilaufgabe 1aAbb. 1

    Begründen Sie, dass \(D_f = [-3;+\infty[\) die maximale Definitionsmenge von \(f\) ist. Wie geht \(G_f\) aus dem Graphen der in \(\mathbb R_0^+\) definierten Funktion \(w : x \mapsto \sqrt{x\;}\;\) hervor?

    (2 BE)

  • Abbildung 2 legt die Vermutung nahe, dass \(G_f\) bezüglich des Schnittpunkts \(P\,(-1|-1)\) seiner Asymptoten symmetrisch ist. Zum Nachweis dieser Symmetrie von \(G_f\) kann die Funktion \(g\) betrachtet werden, deren Graph aus \(G_f\) durch Verschiebung um 1 in positive \(x\)-Richtung und um 1 in positive \(y\)-Richtung hervorgeht.

    Bestimmen Sie einen Funktionsterm von \(g\). Weisen Sie anschließend die Punktsymmetrie von \(G_f\) nach, indem Sie zeigen, dass der Graph von \(g\) punktsymmetrisch bezüglich des Koordinatenursprungs ist.

    (Teilergebnis: \(\displaystyle g(x) = \frac{1}{2}x + \frac{8}{x}\))

    (6 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

Seite 2 von 3