Mathematik Abitur Bayern 2013

  • Nach der Wahl darf die Partei A in einem Ausschuss drei Sitze besetzen. Von den acht Stadträtinnen und vier Stadträten der Partei A, die Interesse an einem Sitz in diesem Ausschuss äußern, werden drei Personen per Losentscheid als Ausschussmitglieder bestimmt.

    Die Zufallsgröße \(X\) beschreibt die Anzahl der weiblichen Ausschussmitglieder der Partei A. Abbildung 1 zeigt die Wahrscheinlichkeitsverteilung der Zufallsgröße \(X\) mit \(P(X = 0) = \frac{1}{55}\) und \(P(X = 3) = \frac{14}{55}\).

    Abbildung 1Abb. 1

    Abbildung 2Abb. 2

     

    Berechnen Sie die Wahrscheinlichkeiten \(P(X = 1)\) und \(P(X = 2)\).

    (Ergebnis: \(P(X = 1) = \frac{12}{55}\), \(P(X = 2) = \frac{28}{55}\))

    (4 BE)

  • Im Folgenden wird die Schar der in \(\mathbb R\) definierten Funktionen \(g_c \colon x \mapsto f(x) + c\) mit \(c \in \mathbb R\) betrachtet.

    Geben Sie in Abhängigkeit von \(c\) ohne weitere Rechnung die Koordinaten des Hochpunkts des Graphen von \(g_c\) sowie das Verhalten von \(g_c\) für \(x \to + \infty\) an.

    (2 BE)

  • Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massivem Beton, der die Form eines Spats hat. Alle Seitenflächen eines Spats sind Parallelogramme.

    In einem Modell lässt sich der Grundkörper durch einen Spat \(ABCDPQRS\) mit \(A\,(28|0|0)\), \(B\,(28|10|0)\), \(D\,(20|0|6)\) und \(P\,(0|0|0)\) beschreiben (vgl. Abbildung). Die rechteckige Grundfläche \(ABQP\) liegt in der \(x_1x_2\)-Ebene. Im Koordinatensystem entspricht eine Längeneinheit 0,1 m, d.h. der Grundkörper ist 0,6 m hoch.

    Spat ABCDPQRS

    Geben Sie die Koordinaten des Punkts \(C\) an und zeigen Sie, dass die Seitenfläche \(ABCD\) ein Quadrat ist.

    (5 BE)

  • Geben Sie jeweils den Term einer in \(\mathbb R\) definierten Funktion an, die die angegebene Wertemenge \(\mathbb W\) hat.

    \(\mathbb W = [2; + \infty[\)

    (2 BE)

  • Geben Sie für \(x \in \mathbb R^+\) die Lösungen der folgenden Gleichung an:

    \[(\ln x - 1) \cdot (e^x - 2) \cdot \left( \frac{1}{x} - 3 \right) = 0\]

    (3 BE)

  • Abbildung 2 zeigt die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße \(Y\) mit den Parametern \(n = 3\) und \(p = \frac{2}{3}\). Zeigen Sie rechnerisch, dass \(Y\) den gleichen Erwartungswert wie die Zufallsgröße \(X\), aber eine größere Varianz als \(X\) besitzt.

    Erläutern Sie, woran man durch Vergleich der Abbildungen 1 und 2 erkennen kann, dass \(Var(Y) > Var(X)\) gilt.

    (4 BE)

  • In einem kartesischen Koordinatensystem sind die Geraden \(\displaystyle g\;\colon\, \vec{X} = \begin{pmatrix} 8 \\ 1 \\ 7 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}\), \(\lambda \in \mathbb R\,\), und \(\displaystyle h\;\colon\, \vec{X} = \begin{pmatrix} -1 \\ 5 \\ -9 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}\), \(\mu \in \mathbb R\,\), gegeben. Die Geraden \(g\) und \(h\) schneiden sich im Punkt \(T\).

    Bestimmen Sie die Koordinaten von \(T\).

    (Ergebnis: \(T\,(2|-1|3)\)) 

    (4 BE)

  • Ein Kubikmeter des verwendeten Betons besitzt eine Masse von 2,1 t. Berechnen Sie die Masse des Grundkörpers.

    (3 BE)

  • Berechnen Sie die mittlere Änderungsrate \(m_S\) von \(f\) im Intervall \([-0{,}5; 0{,}5]\) sowie die lokale Änderungsrate \(m_T\) an der Stelle \(x = 0\). Berechnen Sie, um wie viel Prozent \(m_S\) von \(m_T\) abweicht.

    (4 BE)

  • Der Graph von \(f\), die \(x\)-Achse und die Gerade \(x = u\) mit \(u \in \mathbb R^+\) schließen für \(0 \leq x \leq u\) ein Flächenstück mit dem Inhalt \(A(u)\) ein.

    Zeigen Sie, dass \(A(u) = 2 - 2e^{-0{,}5u^2}\) gilt. Geben Sie \(\lim \limits_{u \, \to \, + \infty} A(u)\) an und deuten Sie das Ergebnis geometrisch.

    (6 BE)

  • Die Ursprungsgerade \(h\) mit der Gleichung \(y = \frac{2}{e^2} \cdot x\) schließt mit \(G_f\) für \(x \geq 0\) ein Flächenstück mit dem Inhalt \(B\) vollständig ein.

    Berechnen Sie die \(x\)-Koordinaten der drei Schnittpunkte der Geraden \(h\) mit \(G_f\) und zeichnen Sie die Gerade in Abbildung 2 ein. Berechnen Sie \(B\).

    (6 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \sqrt{3x + 9}\) mit maximaler Definitionsmenge \(D\).

    Bestimmen Sie \(D\) und geben Sie die Nullstelle von \(g\) an.

    (3 BE)

  • Die Anzahl der Nullstellen von \(g_c\) hängt von \(c\) ab. Geben Sie jeweils einen möglichen Wert von \(c\) an, sodass gilt:

    α) \(g_c\) hat keine Nullstelle.

    β) \(g_c\) hat genau eine Nullstelle.

    γ) \(g_c\) hat genau zwei Nullstellen.

    (3 BE)

  • Begründen Sie für \(c > 0\) anhand einer geeigneten Skizze, dass \(\displaystyle \int_0^3 g_c(x)\,dx = \int_0^3 f(x)\,dx + 3c\) gilt.

    (2 BE)

  • Die von Solarmodulen abgegebene elektrische Leistung hängt unter anderem von der Größe ihres Neigungswinkels gegen die Horizontale ab. Die Tabelle gibt den Anteil der abgegebenen Leistung an der maximal möglichen Leistung in Abhängigkeit von der Größe des Neigungswinkels an. Schätzen Sie diesen Anteil für die Solarmodule des Pavillons - nach Berechnung des Neigungswinkels - unter Verwendung der Tabelle ab.

    Tabelle: Neigungswinkel / Anteil an der maximalen Leistung

    (4 BE)

  • Machen Sie plausibel, dass das Volumen des Spats mithilfe der Formel \(V = G \cdot h\) berechnet werden kann, wobei \(G\) der Flächeninhalt des Rechtecks \(ABQP\) und \(h\) die zugehörige Höhe des Spats ist. 

    (3 BE)

  • Im betrachteten Zeitraum gibt es ein jahr, in dem die Geburtenziffer am stärksten abnimmt. Geben Sie mithilfe von Abbildung 2 einen Näherungswert für dieses Jahr an. Beschreiben Sie, wie man auf der Grundlage des Modells rechnerisch nachweisen könnte, dass die Abnahme der Geburtenziffer von diesem Jahr an kontinuierlich schwächer wird.

    (3 BE)

  • Geben Sie für die Funktion \(f\) mit \(f(x) = \ln (2013 - x)\) den maximalen Definitionsbereich \(D\), das Verhalten von \(f\) an den Grenzen von \(D\) sowie die Schnittpunkte des Graphen von \(f\) mit den Koordinatenachsen an.

    (5 BE)

  • Der Graph der in \(\mathbb R\) definierten Funktion \(f \colon x \mapsto x \cdot \sin x\) verläuft durch den Koordinatenursprung. Berechnen Sie \(f''(0)\) und geben Sie das Krümmungsverhalten des Graphen von \(f\) in unmittelbarer Nähe des Koordinatenursprungs an.

    (4 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(g \colon x \mapsto e^{-x}\) und \(h \colon x \mapsto x^3\).

    Veranschaulichen Sie durch eine Skizze, dass die Graphen von \(g\) und \(h\) genau einen Schnittpunkt haben.

    (2 BE)

Seite 2 von 4