Prüfungsteil A

  • Gegeben ist eine Bernoullikette mit der Länge \(n\) und der Trefferwahrscheinlichkeit \(p\). Erklären Sie, dass für alle \(k \in \{0; 1; 2; \dots; n\}\) die Beziehung \(B(n; p; k) = B(n; 1 - p; n - k)\) gilt. 

    (2 BE)

  • Ein Glücksrad besteht aus fünf gleich großen Sektoren. Einer der Sektoren ist mit „0" beschriftet, einer mit „1" und einer mit „2"; die beiden anderen Sektoren sind mit „9" beschriftet.

    Das Glücksrad wird viermal gedreht. Berechnen Sie die Wahrscheinlichkeit dafür, dass die Zahlen 2, 0, 1 und 9 in der angegebenen erzielt werden.

    (2 BE)

  • Das Glücksrad wird zweimal gedreht. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Summe der erzielten Zahlen mindestens 11 beträgt.

    (3 BE)

  • Gegeben ist eine binomialverteilte Zufallsgröße \(X\) mit dem Parameterwert \(n = 5\). Dem Diagramm in Abbildung 1 kann man die Wahrscheinlichkeitswerte \(P(X \leq k)\) mit \(k \in \{0; 1; 2; 3; 4\}\) entnehmen.

    Ergänzen Sie den zu \(k = 5\) gehörenden Wahrscheinlichkeitswert im Diagramm. Ermitteln Sie näherungsweise die Wahrscheinlichkeit \(P(X = 2)\).

    Abb. 1Abbildung 1 Aufgabe 2 Stochastik 2 Mathematik Abitur Bayern 2019 A

    (2 BE)

  • Gegeben ist außerdem die Schar der Geraden \(h_a \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix}\) mit \(\mu \in \mathbb R\) und \(a \in \mathbb R\). Weisen Sie nach, dass \(g\) und \(h_a\) für jeden Wert von \(a\) windschief sind.

    (3 BE) 

  • Berechnen Sie den Abstand von \(g\) und \(h\).

    (1 BE)

  • Ermitteln Sie den Term der Ableitungsfunktion \(g'\) von \(g\).

    (2 BE)

  • Die Ebene \(E \colon 3x_{1} + 2x_{2} + 2x_{3} = 6\) enthält einen Punkt, dessen drei Koordinaten übereinstimmen. Bestimmen Sie diese Koordinaten.

    (2 BE)

  • Begründen Sie, dass die folgende Aussage richtig ist: Es gibt unendlich viele Ebenen, die keinen Punkt enthalten, dessen drei Koordinaten übereinstimmen.

    (3 BE)

  • Gegeben sind die beiden Kugeln \(k_{1}\) mit Mittelpunkt \(M_{1}(1|2|3)\) und Radius \(5\) sowie \(k_{2}\) mit Mittelpunkt \(M_{2}(-3|-2|1)\) und Radius \(5\).

    Zeigen Sie, dass sich \(k_{1}\) und \(k_{2}\) schneiden.

    (2 BE)

  • Die Schnittfigur von \(k_{1}\) und \(k_{2}\) ist ein Kreis. Bestimmen Sie die Koordinaten des Mittelpunkts und den Radius dieses Kreises.

    (3 BE)

  • Die Ebene \(E \colon 3x_{1} + 2x_{2} + 2x_{3} = 6\) enthält einen Punkt, dessen drei Koordinaten übereinstimmen. Bestimmen Sie diese Koordinaten.

    (2 BE)

  • Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\) mit \(\lambda \in \mathbb R\).

    Zeigen Sie, dass \(g\) in der Ebene mit der Gleichung \(x_1 + x_2 + x_3 = 2\) liegt.

    (2 BE) 

  • Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}\), \(\lambda \in \mathbb R\), sowie eine weitere Gerade \(h\), welche parallel zu \(g\) ist und durch den Punkt \(A(2|0|0)\) verläuft. Der Punkt \(B\) liegt auf \(g\) so, dass die Geraden \(AB\) und \(h\) senkrecht zueinander sind.

    Bestimmen Sie die Koordinaten von \(B\).

    (zur Kontrolle: \(B(-2|3|2)\))

    (4 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Die Abbildung 1 zeigt den Graphen \(G_{f'}\) der Ableitungsfunktion \(f'\) einer in \(\mathbb R\) definierten ganzrationalen Funktion \(f\). Nur in den Punkten \((-4|f'(-4))\) und \((5|f'(5))\) hat der Graph \(G_{f'}\) waagrechte Tangenten.

    Abbildung 1 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

    Begründen Sie, dass \(f\) genau eine Wendestelle besitzt. 

    (2 BE)

  • Es gibt Tangenten an den Graphen von \(f\), die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen \(\mathbf{G_{f'}}\) der Ableitungsfunktion \(f'\) in der Abbildung 1 Näherungswerte für die \(x\)-Koordinaten derjenigen Punkte, in denen der Graph von \(f\) jeweils eine solche Tangente hat.

    (2 BE)

  • Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f \colon x \mapsto x^{2} + 4\) und \(g_{m} \colon x \mapsto m \cdot x\) mit \(m \in \mathbb R\). Der Graph von \(f\) wird mit \(G_{f}\) und der Graph von \(g_{m}\) mit \(G_{m}\) bezeichnet.

    Skizzieren Sie \(G_{f}\) in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen \(G_{f}\) und \(G_{4}\).

    (3 BE)

  • Es gibt Werte von \(m\), für die die Graphen \(G_{f}\) und \(G_{m}\) jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von \(m\) an.

    (2 BE)

  • Gegeben ist die Funktion \(g\) mit \(g(x) = 0{,}7 \cdot e^{0{,}5x} - 0{,}7\) und \(x \in \mathbb R\). Die Funktion \(g\) ist umkehrbar. Die Abbildung 2 zeigt den Graphen \(G_{g}\) von \(g\) sowie einen Teil des Graphen \(G_{h}\) der Umkehrfunktion \(h\) von \(g\).

    Abbildung 2 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 2 den darin fehlenden Teil von \(G_{h}\) ein.

    (2 BE)