Prüfungsteil A

  • Betrachtet wird das von den Graphen \(G_{g}\) und \(G_{h}\) eingeschlossene Flächenstück. Schraffieren Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term \(\displaystyle 2 \cdot \int_{0}^{2{,}5} (x - g(x))dx\) berechnet werden kann.

    (2 BE)

  • Wird der Punkt \(P(1|2|3)\) an der Ebene \(E\) gespiegelt, so ergibt sich der Punkt \(Q(7|2|11)\).

    Bestimmen Sie eine Gleichung von \(E\) in Koordinatenform.

    (3 BE)

  • Die Tangente an den Graphen von \(f\) im Punkt \(Q_{a}\) wird mit \(t_{a}\) bezeichnet. Bestimmen Sie rechnerisch denjenigen Wert von \(a \in \mathbb R\), für den \(t_{a}\) durch \(P\) verläuft.

    (3 BE)

  • Ermitteln Sie den Term der Ableitungsfunktion \(g'\) von \(g\).

    (2 BE)

  • Die Abbildung 1 zeigt einen Teil des Graphen \(G_{h}\) einer in \(\mathbb R \backslash \{2\}\) definierten gebrochenrationalen Funktion \(h\). Die Funktion \(h\) hat bei \(x = 2\) eine Polstelle ohne Vorzeichenwechsel; zudem besitzt \(G_{h}\) die Gerade mit der Gleichung \(y = x - 7\) als schräge Asymptote.

    Abbildung 1 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Zeichnen Sie in die Abbildung 1 die Asymptoten von \(G_{h}\) ein und skizzieren Sie im Bereich \(x < 2\) einen möglichen Verlauf von \(G_{h}\).

    (3 BE)

  • Berechnen Sie unter Berücksichtigung des asymptotischen Verhaltens von \(G_{h}\) einen Näherungswert für \(\displaystyle \int_{10}^{20} h(x)dx\).

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(k \colon x \mapsto \dfrac{-x^{2} + 2x}{2x^{2} + 4}\). Ihr Graph wird mit \(G_{k}\) bezeichnet.

    Geben Sie die Nullstellen von \(k\) an und begründen Sie anhand des Funktionsterms, dass \(G_{k}\) die Gerade mit der Gleichung \(y = -0{,}5\) als waagrechte Asymptote besitzt.

    (3 BE)

  • Berechnen Sie die \(x\)-Koordinate des Schnittpunkts von \(G_{k}\) mit der waagrechten Asymptote.

    (2 BE)

  • Die Abbildung 2 zeigt den Graphen \(G_{f}\) einer in \([0{,}8; +\infty[\) definierten Funktion f.

    Abbildung 2 Analysis 2 Prüfungsteil A Mathematik Abitur Bayern 2020

    Betrachtet wird zudem die in \([0{,}8; +\infty[\) definierte Integralfunktion \(\displaystyle J \colon x \mapsto \int_{2}^{x} f(t) dt\).

    Begründen Sie mithilfe von Abbildung 2, dass \(J(1) \approx -1\) gilt, und geben Sie einen Näherungswert für den Funktionswert \(J(4{,}5)\) an. Skizzieren Sie den Graphen von \(J\) in der Abbildung 2.

    (5 BE)

  • Untersuchen Sie, ob \(K\) die \(x_1x_2\)-Ebene schneidet.

    (2 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(f\) mit \(f(x) = \frac{1}{8}x^{3}\) sowie die Punkte \(Q_{a}(a|f(a))\) für \(a \in \mathbb R\). Die Abbildung zeigt den Graphen von \(f\) sowie die Punkte \(P(0|2)\) und \(Q_{2}\).

    Abbildung Aufgabe 4 Analysis 1 Prüfungsteil A Mathematik Abitur Bayern 2021

    Berechnen Sie für \(a \neq 0\) die Steigung \(m_{a}\) der Gerade durch die Punkte \(P\) und \(Q_{a}\) in Abhängigkeit von \(a\).

    (zur Kontrolle: \(m_{a} = \dfrac{a^{3} - 16}{8a}\))

    (2 BE)

  • Ein Glücksrad besteht aus zwei unterschiedlich großen Sektoren. Der größere Sektor ist mit der Zahl 1 und der kleinere mit der Zahl 3 beschriftet. Die Wahrscheinlichkeit dafür, beim einmaligen Drehen des Glücksrads die Zahl 1 zu erzielen, wird mit \(p\) bezeichnet. Das Glücksrad wird zweimal gedreht.

    Begründen Sie, dass die Wahrscheinlichkeit dafür, dass die Summe der beiden erzielten Zahlen 4 ist, durch den Term \(2p \cdot (1- p)\) angegeben wird.

    (1 BE)

  • Die Zufallsgröße \(X\) beschreibt die Summe der beiden erzielten Zahlen. Bestimmen Sie, für welchen Wert von \(p\) die Zufallsgröße \(X\) den Erwartungswert 3 hat.

    (4 BE)

  • Die Strecke \([PQ]\) mit den Eigenschaften \(P(8|-5|1)\) und \(Q\) ist Durchmesser einer Kugel mit Mittelpunkt \(M(5|-1|1)\).

    Berechnen Sie die Koordinaten von \(Q\) und weisen Sie nach, dass der Punkt \(R(9|-1|4)\) auf der Kugel liegt.

    (3 BE)

  • Begründen Sie ohne weitere Rechnung, dass das Dreieck \(PQR\) bei \(R\) rechtwinklig ist.

    (2 BE)

  • Gegeben sind die Punkte \(P(-2|3|0)\), \(R(2|-1|2)\) und \(Q(q|1|5)\) mit der reellen Zahl \(q\), wobei \(Q\) von \(P\) genauso weit entfernt ist wie von \(R\).

    Bestimmen Sie \(q\).

    (zur Kontrolle: \(q = -2\))

    (3 BE)

  • Ermitteln Sie die Koordinaten des Eckpunkts \(S\) der Raute \(PQRS\). Zeigen Sie, dass \(PQRS\) kein Quadrat ist.

    (2 BE)

  • Gegeben ist die Kugel \(K\) mit Mittelpunkt \(M(3|-6|5)\) und Radius \(2\sqrt{6}\).

    Geben Sie eine Gleichung von \(K\) in Koordinatenform an und zeigen Sie, dass der Punkt \(P(5|-4|1)\) auf \(K\) liegt.

    (3 BE)

  • Der Graph von \(f\) schließt mit der \(x\)-Achse sowie den Geraden mit den Gleichungen \(x = 1\) und \(x = b\) mit \(b > 1\) ein Flächenstück ein. Bestimmen Sie denjenigen Wert von \(b\), für den dieses Flächenstück den Inhalt 1 hat.

    (3 BE)

  • Gegeben ist die in \(\mathbb R\) definierte Funktion \(h \colon x \mapsto \ln{\left( \dfrac{1}{x^{2} + 1} \right)}\). Begründen Sie, dass die Wertemenge von \(h\) das Intervall \(]-\infty;0]\) ist.

    (3 BE)