Binomialverteilung

  • Der Großhändler behauptet, dass sich die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B durch eine veränderte Aufbereitung des Saatguts auf mehr als 70 % erhöht hat. Deshalb soll die Nullhypothese „Die Wahrscheinlichkeit für das Keimen eines Samenkorns der Qualität B ist höchstens 70 %." auf einem Signifikanzniveau von 5 % getestet werden. Dazu werden 100 der verändert aufbereiteten Samenkörner der Qualität B zufällig ausgewählt und gesät. Bestimmen Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Bestimmen Sie den kleinsten Wert von \(n\), für den die Wahrscheinlichkeit dafür, dass mindestens eine Pflanze von Pilzen befallen wird, mindestens 99 % beträgt.

    (4 BE)

  • Die Geschwindigkeitsmessungen werden über einen längeren Zeitraum fortgesetzt. Dabei zeigt sich, dass die Verteilung der auf km/h genau gemessenen Geschwindigkeiten näherungsweise durch eine Binomialverteilung mit den Parametern \(n = 100\) und \(p = 0{,}8\) beschrieben werden kann. Beispielsweise entspricht \(B(100; 0{,}8; 77)\) näherungsweise dem Anteil der mit einer Geschwindigkeit von 77 km/h erfassten Pkw.

    Bestätigen Sie exemplarisch für eine der beiden mittleren Geschwindigkeitsklassen der oben dargestellten Stichprobe, dass die ermittelte Anzahl der Fahrten mit der Beschreibung durch die Binomialverteilung im Einklang steht.

    (4 BE)

  • Mit dem Glücksrad wird ein Spiel durchgeführt. Jeder Spieler darf das Glücksrad beliebig oft drehen. Beendet er das Spiel selbst, bevor er eine „0" erzielt, so wird ihm die Summe der erzielten Zahlen in Euro ausgezahlt. Erzielt er eine „0", so ist das Spiel dadurch beendet und es erfolgt keine Auszahlung.

    Ein erster Spieler entscheidet sich vor dem Spiel dafür, das Glücksrad, sofern er keine „0" erzielt, viermal zu drehen und danach das Spiel zu beenden. Bestimmen Sie die Wahrscheinlichkeit dafür, dass er eine Auszahlung erhält.

    (2 BE) 

  • Ein Unternehmen stellt Kunststoffteile her. Erfahrungsgemäß sind 4 % der hergestellten Teile fehlerhaft. Die Anzahl fehlerhafter Teile unter zufällig ausgewählten kann als binomialverteilt angenommen werden.

    50 Kunststoffteile werden zufällig ausgewählt. Bestimmen Sie für die folgenden Ereignisse jeweils die Wahrscheinlichkeit:

    \(A\):  „Genau zwei der Teile sind fehlerhaft."

    \(B\):  „Mindestens 6 % der Teile sind fehlerhaft."

    (3 BE)

  • Das Unternehmen richtet ein Online-Portal zur Reservierung ein und vermutet, dass dadurch der Anteil der Personen mit Reservierung, die zur jeweiligen Fahrt nicht erscheinen, zunehmen könnte. Als Grundlage für die Entscheidung darüber, ob pro Fahrt künftig mehr als 64 Reservierungen zugelassen werden, soll die Nullhypothese „Die Wahrscheinlichkeit dafür, dass eine zufällig ausgewählte Person mit Reservierung nicht zur Fahrt erscheint, beträgt höchstens 10 %." mithilfe einer Stichprobe von 200 Personen mit Reservierung auf einem Signifikanzniveau von 5 % getestet werden. Vor der Durchführung des Tests wird festgelegt, die Anzahl der für eine Fahrt möglichen Reservierungen nur dann zu erhöhen, wenn die Nullhypothese aufgrund des Testergebnisses abgelehnt werden müsste.

    Ermitteln Sie die zugehörige Entscheidungsregel.

    (5 BE)

  • Jeder sechste Besucher eines Volksfests trägt ein Lebkuchenherz um den Hals. Während der Dauer des Volksfests wird 25-mal ein Besucher zufällig ausgewählt. Die Zufallsgröße \(X\) beschreibt die Anzahl der ausgewählten Besucher, die ein Lebkuchenherz tragen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass unter den ausgewählten Besuchern höchstens ein Besucher ein Lebkuchenherz trägt.

    (2 BE)

  • Beschreiben Sie im Sachzusammenhang ein Ereignis, dessen Wahrscheinlichkeit mit dem Term \(\sum \limits_{i\,=\,5}^{8}B\left( 25;\frac{1}{6};i \right)\) berechnet werden kann.

    (2 BE)

  • Die Inhaberin der Losbude beschäftigt einen Angestellten, der Besucher des Volksfests anspricht, um diese zum Kauf von Losen zu animieren. Sie ist mit der Erfolgsquote des Angestellten unzufrieden.

    Die Inhaberin möchte dem Angestellten das Gehalt kürzen, wenn weniger als 15 % der angesprochenen Besucher Lose kaufen. Die Entscheidung über die Gehaltskürzung soll mithilfe eines Signifikanztests auf der Grundlage von 100 angesprochenen Besuchern getroffen werden. Dabei soll möglichst vermieden werden, dem Angestellten das Gehalt zu Unrecht zu kürzen. Geben Sie die entsprechende Nullhypothese an und ermitteln Sie die zugehörige Entscheidungsregel auf dem Signifikanzniveau von 10 %.

    (5 BE)

  • Bestimmen Sie die Wahrscheinlichkeit dafür, dass der Wert der Zufallsgröße \(X\) höchstens um eine Standardabweichung vom Erwartungswert der Zufallsgröße abweicht.

    (4 BE)

  • Beim Torwandschießen treten zwei Schützen gegeneinander an. Zunächst gibt der eine sechs Schüsse ab, anschließend der andere. Wer dabei mehr Treffer erzielt, hat gewonnen; andernfalls geht das Torwandschießen unentschieden aus.

    Joe trifft beim Torwandschießen bei jedem Schuss mit einer Wahrscheinlichkeit von 20 %, Hans mit einer Wahrscheinlichkeit von 30 %.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass Joe beim Torwandschießen gegen Hans gewinnt, wenn Hans bei seinen sechs Schüssen genau zwei Treffer erzielt hat. Erläutern Sie anhand einer konkreten Spielsituation, dass das dieser Aufgabe zugrunde gelegte mathematische Modell im Allgemeinen nicht der Realität entspricht.

    (4 BE)

  • Um die Wirksamkeit eines Pflanzenschutzmittels gegen Pilzbefall nachzuweisen, wurden zahlreiche Versuche durchgeführt, bei denen landwirtschaftliche Nutzpflanzen zunächst mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht wurden. Im Mittel sind dabei 5 % der Pflanzen von Pilzen befallen worden.

    Bei einem weiteren solchen Versuch mit \(n\) Pflanzen beschreibt die Zufallsgröße \(X_n\) die Anzahl der Pflanzen, die von Pilzen befallen werden. Im Folgenden soll davon ausgegangen werden, dass \(X_n\) binomialverteilt ist mit den Parametern \(n\) und \(p = 0{,}05\).

    Es werden 15 Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht. Bestimmen Sie jeweils die Wahrscheinlichkeit folgender Ereignisse:

    \(E_1\): „Keine der Pflanzen wird von Pilzen befallen."

    \(E_2\): „Höchstens zwei Pflanzen werden von Pilzen befallen."

    \(E_3\): „12 oder 13 Pflanzen bleiben ohne Pilzbefall."

    (6 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Ermitteln Sie unter der Voraussetzung, dass bei einem Versuch mit 400 Pflanzen der Wert der Zufallsgröße \(X_{400}\) um höchstens eine Standardabweichung vom Erwartungswert abweicht, die kleinst- und die größtmögliche relative Häufigkeit der Pflanzen, die von Pilzen befallen werden.

    (4 BE)

  • Begründen Sie, dass \(X\) nicht binomialverteilt ist.

    (3 BE)

  • Mithilfe der Graphologie werden aus der Handschrift einer Person Rückschlüsse auf deren Persönlichkeit gezogen.

    An einer Fachschule für Graphologie ist eine Dozentenstelle neu zu besetzen. Den Bewerbern sollen im Rahmen eines Vortests Schriftproben vorgelegt werden. Jede Schriftprobe stammt entweder von einer entscheidungsfreudigen oder von einer zögerlichen Person; dies soll dem jeweiligen Bewerber mitgeteilt werden, der sich anschließend bei jeder Schriftprobe entscheiden muss, ob er sie einer entscheidungsfreudigen oder einer zögerlichen Person zuordnet. Ein Bewerber soll den Vortest bestehen, wenn er sich bei mehr als zwei Dritteln der vorgelegten Schriftproben richtig entscheidet.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein Bewerber, der nur rät, den Vortest besteht, wenn man ihm zwölf Schriftproben vorlegen würde.

    (5 BE)

  • Die Schulleitung fordert, den Vortest so zu gestalten, dass die Wahrscheinlichkeit dafür, den Vortest zu bestehen, für einen Bewerber, der nur rät, höchstens 3 % beträgt. Man entscheidet sich dafür, die Anzahl vorgelegter Schriftproben auf 30 festzulegen.

    Zeigen Sie, dass mit dieser Festlegung die Forderung der Schulleitung erfüllt ist.

    (3 BE)

  • Ermitteln Sie auf fünf Prozent genau, wie groß die Wahrscheinlichkeit dafür, sich bei einer Schriftprobe richtig zu entscheiden, für einen Bewerber mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass er den Vortest besteht, mindestens 90 % beträgt.

    (3 BE)

  • Ein Unternehmen lässt im Rahmen von Bewerbungsverfahren graphologische Gutachten zu den Personen erstellen, die sich um eine Stelle bewerben. Im Mittel werden 25 % der Bewerber aufgrund ihres graphologischen Gutachtens abgewiesen. Für eine Stelle bewerben sich 20 Personen.

    Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Anzahl derjenigen Bewerber, die aufgrund ihres graphologischen Gutachtens abgelehnt werden, kleiner als die dafür im Mittel zu erwartende Anzahl ist.

    (3 BE)

  • Betrachtet wird eine Bernoullikette mit der Trefferwahrscheinlichkeit 0,9 und der Länge 20. Beschreiben Sie zu dieser Bernoullikette ein Ereignis, dessen Wahrscheinlichkeit durch den Term \(0{,}9^{20} + 20 \cdot 0{,}1 \cdot 0{,}9^{19}\) angegeben wird.

    (2 BE)

Seite 2 von 4