Mathematik Abitur Bayern 2011 G8 Geometrie II - Aufgaben mit Lösungen

Teilaufgabe a

In einem kartesischen Koordinatensystem sind die Punkte \(A\,(1|7|3)\), \(B\,(6|-7|1)\) und \(C\,(-2|1|-3)\) gegeben.

Weisen Sie nach, dass die Punkte \(A\), \(B\) und \(C\) ein rechtwinkliges Dreieck festlegen, dessen Hypothenuse die Strecke \([AB]\) ist und dessen kürzere Kathete die Länge 9 hat.

(4 BE)

Teilaufgabe b

Alle Punkte \(C^\ast\) im Raum, die zusammen mit \(A\) und \(B\) ein zum Dreieck \(ABC\) kongruentes Dreieck festlegen, bilden zwei gleich große Kreise. Beschreiben Sie (z.B. durch eine Skizze) die Lage der beiden Kreise bezüglich der Strecke \([AB]\) und ermitteln Sie den Radius der beiden Kreise.

(6 BE)

Teilaufgabe c

Das Dreieck \(ABC\) aus Aufgabe \(a\) ist die Grundfläche einer dreiseitigen Pyramide \(ABCS\) mit der Spitze \(S(11{,}5|4|-6)\).

 

Die Grundfläche der Pyramide liegt in einer Ebene \(E\). Ermitteln Sie eine Gleichung von \(E\) in Normalenform.

(mögliches Ergebnis: \(E\colon \enspace 2x_1 + x_2 -2x_3 - 3 = 0)\)

(3 BE)

Teilaufgabe e

Welche Lagebeziehung muss eine Gerade zur Ebene \(E\) haben, wenn für jeden Punkt \(P\) dieser Geraden die Pyramide \(ABCP\) das gleiche Volumen wie die Pyramide \(ABCS\) besitzen soll? Begründen Sie Ihre Antwort.

(3 BE)

Teilaufgabe f

Der Umkreis des Dreiecks \(ABC\) und der Punkt \(S\) legen einen Kegel fest. Zeigen Sie, dass es sich um einen geraden Kegel handelt, der Mittelpunkt des Grundkreises also zugleich der Höhenfußpunkt des Kegels ist. Berechnen Sie, um wie viel Prozent das Volumen des Kegels größer ist als das Volumen der Pyramide \(ABCS\).

(7 BE)