- Details
- Kategorie: Geometrie 2
Gegeben sind die Punkte \(A(3|5|5)\) und \(B(1|1|1)\) sowie die Geraden \(g\) und \(h\), die sich in \(B\) schneiden. Die Gerade \(g\) hat den Richtungsvektor \(\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}\), die Gerade \(h\) den Richtungsvektor \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}\).
Weisen Sie nach, dass \(A\) auf \(g\) liegt.
(1 BE)
- Details
- Kategorie: Geometrie 2
Bestimmen Sie die Koordinaten zweier Punkte \(C\) und \(D\) so, dass \(C\) auf \(h\) liegt und das Viereck \(ABCD\) eine Raute ist.
(4 BE)