- Details
- Kategorie: Geometrie 1
Gegeben ist die Gerade \(g \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\) mit \(\lambda \in \mathbb R\).
Zeigen Sie, dass \(g\) in der Ebene mit der Gleichung \(x_1 + x_2 + x_3 = 2\) liegt.
(2 BE)
- Details
- Kategorie: Geometrie 1
Gegeben ist außerdem die Schar der Geraden \(h_a \colon \overrightarrow{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix}\) mit \(\mu \in \mathbb R\) und \(a \in \mathbb R\). Weisen Sie nach, dass \(g\) und \(h_a\) für jeden Wert von \(a\) windschief sind.
(3 BE)