Gegeben sind die in \(\mathbb R\) definierten Funktionen \(f_a\) mit \(f_a(x) = a \cdot e^{-x} + 3\) und \(a \in \mathbb R \backslash \{0\}\).

Zeigen Sie, dass \(f'_a(0) = -a\) gilt.

(1 BE)

Lösung zu Teilaufgabe 4a

 

\[f_a(x) = a \cdot e^{-x} + 3; \; D_{f_a} = \mathbb R, \; a \in \mathbb R \backslash \{0\}\]

 

Erste Ableitung \(f'_a\) bilden:

Hierfür wird u. a. die Kettenregel sowie die Ableitung der natürlichen Exponentialfunktion benötigt.

 

\[f_a(x) = a \cdot \textcolor{#0087c1}{e}^{\textcolor{#cc071e}{-x}} + 3\]

Erste Ableitung elementarer Funktionen und Ableitungsregeln

loading...

Ableitungen der Grundfunktionen

\[c' = 0 \enspace (c \in \mathbb R)\]

\[\left( x^r \right)' = r \cdot x^{r - 1} \enspace (r \in \mathbb R)\]

\[\left( \sqrt{x} \right)' = \frac{1}{2\sqrt{x}}\]

\[\left( \sin{x} \right)' = \cos{x}\]

\[\left( \cos{x} \right)' = -\sin{x}\]

 

\[\left( \ln{x} \right)' = \frac{1}{x}\]

\[\left( \log_{a}{x}\right)' = \frac{1}{x \cdot \ln{a}}\]

\[\left( e^x \right)' = e^x\]

\[\left(a^x \right)' = a^x \cdot \ln{a}\]

vgl. Merkhilfe

Faktorregel

\[\begin{align*}f(x) &= a \cdot \textcolor{#0087c1}{u(x)} \\[0.8em] f'(x) &= a \cdot \textcolor{#0087c1}{u'(x)}\end{align*}\]

Summenregel

\[\begin{align*}f(x) &= \textcolor{#0087c1}{u(x)} + \textcolor{#cc071e}{v(x)} \\[0.8em] f'(x) &= \textcolor{#0087c1}{u'(x)} + \textcolor{#cc071e}{v'(x)}\end{align*}\]

Produktregel

\[\begin{align*}f(x) &= \textcolor{#0087c1}{u(x)} \cdot \textcolor{#cc071e}{v(x)} \\[0.8em] f'(x) &= \textcolor{#0087c1}{u'(x)} \cdot \textcolor{#cc071e}{v(x)} + \textcolor{#0087c1}{u(x)} \cdot \textcolor{#cc071e}{v'(x)}\end{align*}\]

 

Quotientenregel

\[\begin{align*}f(x) &= \dfrac{\textcolor{#0087c1}{u(x)}}{\textcolor{#cc071e}{v(x)}} \\[0.8em] f'(x) &= \dfrac{\textcolor{#0087c1}{u'(x)} \cdot \textcolor{#cc071e}{v(x)} - \textcolor{#0087c1}{u(x)} \cdot \textcolor{#cc071e}{v'(x)}}{[\textcolor{#cc071e}{v(x)}]^{2}}\end{align*}\]

Kettenregel

\[\begin{align*}f(x) &= \textcolor{#0087c1}{u(}\textcolor{#cc071e}{v(x)}\textcolor{#0087c1}{)} \\[0.8em] f'(x) &= \textcolor{#0087c1}{u'(}\textcolor{#cc071e}{v(x)}\textcolor{#0087c1}{)} \cdot \textcolor{#cc071e}{v'(x)}\end{align*}\]

vgl. Merkhilfe

\[f'_a(x) = a \cdot \underbrace{\textcolor{#0087c1}{e}^{\textcolor{#cc071e}{-x}} \cdot \textcolor{#cc071e}{(-1)}}_{\text{Kettenregel}} + 0 = -a \cdot e^{-x}\]

 

Damit ergibt sich:

 

\[f'_a(0) = -a \cdot \underbrace{e^{0}}_{1} = -a\]