Mathematik Abitur Bayern 2022

  • Ermitteln Sie, wie viele Spiele durchgeführt werden müssen, damit der Erwartungswert der Einnahme für die beiden Aktionen 300 € beträgt.

    (4 BE)

  • In einem Modell für einen Küstenabschnitt am Meer beschreibt die \(x_1x_2\)-Ebene die horizontale Wasseroberfläche und die Gerade \(g\) die Uferlinie. Die Ebene \(E\) stellt im betrachteten Abschnitt den Meeresboden dar. Eine Boje schwimmt auf der Wasseroberfläche an der Stelle, die dem Koordinatenursprung \(O\) entspricht (vgl. Abbildung). Eine Längeneinheit entspricht einem Meter in der Realität.

    Abbildung Geometrie 1 Prüfungsteil B Mathematik Abitur Bayern 2022

    Bestimmen Sie die Größe des Winkels, unter dem der Meeresboden gegenüber der Wasseroberfläche abfällt.

    (3 BE)

  • Begründen Sie ohne Rechnung, dass \(g\) in der \(x_1x_2\)-Ebene liegt.

    (1 BE)

  • Bestimmen Sie den kleinsten Wert von \(n\), für den die Wahrscheinlichkeit dafür, dass mindestens eine Pflanze von Pilzen befallen wird, mindestens 99 % beträgt.

    (4 BE)

  • Die Ebene \(E\) teilt den Quader in zwei Teilkörper. Bestimmen Sie den Anteil des Volumens des pyramidenförmigen Teilkörpers am Volumen des Quaders, ohne die Volumina zu berechnen.

    (3 BE)

  • Gegeben sind die im Folgenden beschriebenen Zufallsgrößen \(X\) und \(Y\):

    • Ein Würfel, dessen Seiten mit den Zahlen von 1 bis 6 durchnummeriert sind, wird zweimal geworfen. \(X\) gibt die dabei erzielte Augensumme an.
    • Aus einem Behälter mit 60 schwarzen und 40 weißen Kugeln wird zwölfmal nacheinander jeweils eine Kugel zufällig entnommen und wieder zurückgelegt. \(Y\) gibt die Anzahl der entnommenen schwarzen Kugeln an.

    Begründen Sie, dass die Wahrscheinlichkeit \(P(X = 4)\) mit der Wahrscheinlichkeit \(P(X = 10)\) übereinstimmt.

    (2 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Gegeben ist die in \([0;10]\) definierte Funktion \(f \colon x \mapsto 2 \cdot \sqrt{10x -x^2}\). Der Graph von \(f\) wird mit \(G_f\) bezeichnet.

    Bestimmen Sie die Nullstellen von \(f\).

    (zur Kontrolle: \(0\) und \(10\))

    (2 BE)

  • Berechnen Sie die Größe \(\varphi\) des Winkels, unter dem \(E\) die \(x_1x_2\)-Ebene schneidet. Geben Sie einen Term an, mit dem aus \(\varphi\) die Größe des Winkels zwischen den Ebenen \(E\) und \(F\) berechnet werden kann.

    (5 BE)

  • Von den Eckpunkten des Rechtecks \(ABCD\) liegen der Punkt \(A(s|0)\) mit \(s \in \;]0;5[\) sowie der Punkt \(B\) auf der \(x\)-Achse, die Punkte \(C\) und \(D\) liegen auf \(G_f\). Das Rechteck besitzt somit die Gerade mit der Gleichung \(x = 5\) als Symmetrieachse. Zeigen Sie, dass die Diagonalen dieses Rechtecks jeweils die Länge 10 besitzen.

    (5 BE)

  • Interpretieren Sie den folgenden Sachverhalt geometrisch:

    Für jede Stammfunktion \(F\) von \(f\) und für jede reelle Zahl \(w > 2022\) gilt

    \[F(w) - F(0) \approx \int_0^{2022} f(x)dx\]

    (3 BE)

  • Gegeben ist die Funktion \(f \colon x \mapsto \dfrac{x^2 + 2x}{x+1}\) mit maximaler Definitionsmenge \(D_f\). Geben Sie \(D_f\) und die Nullstellen von \(f\) an

    (2 BE) 

  • Der Punkt \((0|0|h)\) liegt innerhalb des Quaders und hat von den drei Strecken \([AB]\), \([BC]\) und \([CD]\) den gleichen Abstand. Das folgende Gleichungssystem liefert den Wert von \(h\):

    \[\textsf{I}\quad \overrightarrow{Q} = \begin{pmatrix} 11 \\ 11 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -22 \\ 0 \\ 28 \end{pmatrix}, \; t \in [0;1]\]

    \[\textsf{II}\quad \overrightarrow{PQ} \circ \overrightarrow{AB} = 0\]

    \[\textsf{III}\quad \overline{PQ} = 28 - h\]

    Erläutern Sie die Überlegungen, die diesem Vorgehen zur Bestimmung des Werts von \(h\) zugrunde liegen.

    (4 BE)

  • Gegeben ist die Funktion \(g \colon x \mapsto \dfrac{2x^2}{x^2 - 9}\) mit maximaler Definitionsmenge \(D_g\).

    Geben Sie \(D_g\) sowie eine Gleichung der waagrechten Asymptote des Graphen von \(g\) an.

    (2 BE)

  • Betrachtet wird die Tangente an den Graphen von \(f_a\) im Punkt \((0|f_a (0))\). Bestimmen Sie diejenigen Werte von \(a\), für die diese Tangente eine positive Steigung hat und zudem die \(x\)-Achse in einem Punkt schneidet, dessen \(x\)-Koordinate größer als \(\dfrac{1}{2}\) ist.

    (4 BE)

  • Auf der Gerade durch \(P\) und \(Q\) liegen die Punkte \(R\) und \(S\) symmetrisch bezüglich \(E\); dabei liegt \(R\) bezüglich \(E\) auf der Seite wie \(P\). Der Abstand von \(R\) und \(S\) ist doppelt so groß wie der Abstand von \(P\) und \(Q\).

    Bestimmen Sie die Koordinaten von \(R\).

    (2 BE)

  • Um die Wirksamkeit eines Pflanzenschutzmittels gegen Pilzbefall nachzuweisen, wurden zahlreiche Versuche durchgeführt, bei denen landwirtschaftliche Nutzpflanzen zunächst mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht wurden. Im Mittel sind dabei 5 % der Pflanzen von Pilzen befallen worden.

    Bei einem weiteren solchen Versuch mit \(n\) Pflanzen beschreibt die Zufallsgröße \(X_n\) die Anzahl der Pflanzen, die von Pilzen befallen werden. Im Folgenden soll davon ausgegangen werden, dass \(X_n\) binomialverteilt ist mit den Parametern \(n\) und \(p = 0{,}05\).

    Es werden 15 Pflanzen mit dem Pflanzenschutzmittel behandelt und anschließend mit Pilzsporen besprüht. Bestimmen Sie jeweils die Wahrscheinlichkeit folgender Ereignisse:

    \(E_1\): „Keine der Pflanzen wird von Pilzen befallen."

    \(E_2\): „Höchstens zwei Pflanzen werden von Pilzen befallen."

    \(E_3\): „12 oder 13 Pflanzen bleiben ohne Pilzbefall."

    (6 BE)

  • Ein Wasserspeicher hat die Form eines geraden Zylinders und ist bis zu einem Füllstand von 10 m über dem Speicherboden mit Wasser gefüllt. Bohrt man unterhalb des Füllstands ein Loch in die Wand des Wasserspeichers, so tritt unmittelbar nach Fertigstellung der Bohrung Wasser aus, das in einer bestimmten Entfernung zur Speicherwand auf den Boden trifft. Diese Entfernung wird im Folgenden Spritzweite gennant (vgl. Abbildung). Die Abhängigkeit der Spritzweite von der Höhe des Bohrlochs wird durch die in den bisherigen Teilaufgaben betrachtete Funktion \(f\) modellhaft beschrieben. Dabei ist \(x\) die Höhe des Bohrlochs über dem Speicherboden in Metern und \(f(x)\) die Spritzweite in Metern.

    Abbildung Analysis 1 Prüfungsteil B Mathematik Abitur Bayern 2022

    Der Graph \(G_f\) verläuft durch den Punkt \((3{,}6|9{,}6)\). Geben Sie die Bedeutung dieser Aussage im Sachzusammenhang an.

    (1 BE)

  • Betrachtet wird nun die Schar der in \(\mathbb R\) definierten Funktionen \(f_a \colon x \mapsto x \cdot e^{-\frac{1}{2}a \cdot x^2 + \frac{1}{2}}\) mit \(a \in \mathbb R\).

    Zeigen Sie, dass genau ein Graph der Schar den Punkt \((1|1)\) enthält, und geben Sie den zugehörigen Wert von \(a\) an.

    (3 BE)

  • Um Geld für die beiden Aktionen einzunehmen, bietet die SMV auf dem Schulfest das Spiel „2022" an. Bei dem Spiel werden zwei Glücksräder mit drei bzw. vier gleich großen Sektoren verwendet, die wie in Abbildung 1 beschriftet sind. Für einen Einsatz von 3 € darf man jedes der beiden Glücksräder einmal drehen. Für jede Ziffer 2, die auf den erzielten Sektoren steht, werden 2 € ausbezahlt. Die Zufallsgröße \(Z\) beschreibt, wie oft die Ziffer 2 auf den erzielten Sektoren insgesamt vorkommt.

    Abbildung 1 Stochastik 2 Prüfungsteil B Mathematik Abitur Bayern 2022

    Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von \(Z\). Bestimmen Sie die Wahrscheinlichkeiten \(p_1\) und \(p_2\).

    \(k\) \(0\) \(1\) \(2\) \(3\)
    \(P(Z = k)\) \(\dfrac{1}{3}\) \(p_1\) \(p_2\) \(\dfrac{1}{12}\)

    (zur Kontrolle: \(p_2 = \frac{1}{4}\))

    (3 BE)

Seite 1 von 4