Um das Abfließen des Regenwassers sicherzustellen, muss das Sonnensegel einen Neigungswinkel von mindestens 8° gegenüber dem horizontalen Boden aufweisen. Begründen Sie, dass das Abfließen von Regenwasser im vorliegenden Fall nicht sichergestellt ist.
(3 BE)
Lösung zu Teilaufgabe e
Der Neigungswinkel des Sonnensegels gegenüber der Horizontalen entspricht dem Schnittwinkel \(\alpha\) der Ebene \(E\) und der \(x_{1}x_{2}\)-Ebene. Dieser Schnittwinkel ist gleich dem spitzen Winkel, den die Normalenvektoren beider Ebenen einschließen.
Beispielsweise ist \(n_{x_{1}x_{2}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\) ein Normalenvektor der \(x_{1}x_{2}\)-Ebene.
Aus Teilaufgabe a ist ein Normalenvektor der Ebene E mit \(\overrightarrow{n} = \begin{pmatrix} 1 \\ 1 \\ 12 \end{pmatrix}\) bereits bekannt.
Schnittwinkel \(\boldsymbol{\alpha}\) zweier Ebenen
\[E_1\colon \enspace \overrightarrow{n}_1 \circ \left( \overrightarrow{X} - \overrightarrow{A} \right) = 0\]
\[E_2\colon \enspace \overrightarrow{n}_2 \circ \left( \overrightarrow{X} - \overrightarrow{B} \right) = 0\]
\[\cos \alpha = \frac{\vert \overrightarrow{n}_1 \circ \overrightarrow{n}_2 \vert}{\vert \overrightarrow{n}_1 \vert \cdot \vert \overrightarrow{n}_2 \vert} \enspace \Rightarrow \enspace \alpha = \cos^{-1}(\dots)\]
\[(0^{\circ} \leq \alpha \leq 90^{\circ})\]
\[\begin{align*} \cos \alpha &= \frac{\left| \overrightarrow{n} \circ \overrightarrow{n}_{x_{1}x_{2}} \right|}{\left| \overrightarrow{n} \right| \cdot \left| \overrightarrow{n}_{x_{1}x_{2}} \right|} \\[0.8em] &= \frac{\left| \begin{pmatrix} 1 \\ 1 \\ 12 \end{pmatrix} \circ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right|}{\left| \begin{pmatrix} 1 \\ 1 \\ 12 \end{pmatrix} \right| \cdot \left| \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right|} \\[0.8em] &= \frac{\vert 1 \cdot 0 + 1 \cdot 0 + 12 \cdot 1 \vert}{\sqrt{1^{2} + 1^{2} + {12}^{2}} \cdot \sqrt{0^{2} + 0^{2} + 1^{2}}} \\[0.8em] &= \frac{12}{\sqrt{146}} & &| \; \text{TR:} \; \cos^{-1}(\dots) \\[1.6em] \alpha &= \cos^{-1}\left( \frac{12}{\sqrt{146}} \right) \approx 6{,}7^{\circ}\end{align*}\]
Mit \(6{,}7^{\circ} < 8^{\circ}\) ist das Abfließen des Regenwassers nicht sichergestellt.